Electronic Supplementary Information for

Array-based detection of isomeric and analogous analytes employing synthetically modified fluorophore attached $\boldsymbol{\beta}$-cyclodextrin derivatives

Sauradip Chaudhuri, Dana J. DiScenza, Benjamin Smith, Reid Yocum, Mindy Levine

TABLE OF CONTENTS

Materials and Methods S3
Detailed Procedures S4
Detailed Synthetic Procedures S4
Detailed Fluorescence Modulation Procedures S8
Detailed Array Generation Procedures S9
Detailed Procedures for Limit of Detection Experiments S10
Detailed Procedures for the HPLC Analysis of S2 and S3 S11
Summary Tables S12
Fluorescence Modulation Summary Table S12
Limit of Detection Summary Table S13
Summary Tables for Arrays S14
Summary Figures S18
Summary Figures for HPLC Analysis of Compounds S2 and S3 S18
Summary Figures for Fluorescence Modulation S19
Summary Figures for Limits of Detection S26
Summary Figures for Array Generation Experiments S31
NMR Spectra of All New Compounds S34
Spectroscopic Investigations of Sensors S1-S3 S37
Benesi-Hildebrand Plots for NMR Titration. S38

MATERIALS AND METHODS

All of the reagents were obtained from Sigma Aldrich or Fisher Scientific and used without further purification, unless otherwise noted. β-cyclodextrin was dried in the oven prior to use. Reagent grade solvents (99.9% purity) were used for the synthetic reactions. Column chromatography was performed in a Yamazen AKROS-Automatic TLC Smart Flash Chromatography System. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded in a 400 MHz Bruker AVANCE and 500 MHz Varian NMR spectrometer, with assistance from Dr. Al Bach. Mass spectra were recorded in a Bruker Omniflex MALDI-TOF instrument with 2,5dihydroxybenzoic acid as a matrix at the Department of Chemistry Instrumentation Facility (DCIF) at the Massachusetts Institute of Technology (MIT), with samples run by Dr. Li Li. All of the fluorescence measurements were performed using a Shimadzu RF 5301 spectrophotometer. Both the excitation and emission slit widths were 3 nm . All of the fluorescence spectra were integrated vs. wavenumber on the Xaxis using Origin Pro Version 9.1 software. All arrays were generated using SYSTAT Version 13.

DETAILED PROCEDURES

DETAILED SYNTHETIC PROCEDURES

Overall Synthetic Scheme:

Reaction 1: Synthesis of Perbenzylated $\boldsymbol{\beta}$-Cyclodextrin

To a stirred solution of oven-dried β-cyclodextrin ($2.00 \mathrm{~g}, 1.76 \mathrm{mmol}, 1.0 \mathrm{eq}$.) in DMSO (100 mL) under nitrogen, sodium hydride ($2.60 \mathrm{~g}, 65 \mathrm{mmol}, 36 \mathrm{eq}$.) was added carefully. The solution was allowed to stir for one hour at room temperature, after which time benzyl chloride ($18.5 \mathrm{~mL}, 65 \mathrm{mmol}, 36 \mathrm{eq}$.$) was added$ over the course of one hour. The reaction mixture was stirred for 18 hours at room temperature, followed by the addition of methanol (20 mL). The reaction mixture was then diluted with water (200 mL) and extracted with diethyl ether ($3 \times 200 \mathrm{~mL}$). The combined organic layers were washed with brine (200 mL), dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude product was purified via column chromatography ($25-40 \% \mathrm{v} / \mathrm{v}$ gradient elution of ethyl acetate/hexanes) to obtain a white foamy compound, perbenzylated β-cyclodextrin, ($3.6 \mathrm{~g}, 70 \%$ yield) after being dried under high vacuum. ${ }^{1} \mathrm{H}$ NMR
($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.52\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{2,3}=9.2 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{2,1}=3.3 \mathrm{~Hz}, 7 \mathrm{H} ; 2-\mathrm{H}\right), 3.58\left(\mathrm{~d},{ }^{2} \mathrm{~J}=10.6 \mathrm{~Hz}, 7 \mathrm{H} ; 6-\mathrm{H}\right)$, $3.98-4.10(\mathrm{~m}, 28 \mathrm{H} ; 3-\mathrm{H}, 4-\mathrm{H}, 5-\mathrm{H}, 6-\mathrm{H}), 4.39,4.43\left(\mathrm{AB}, \mathrm{J}_{\mathrm{A}, \mathrm{B}}=12.2 \mathrm{~Hz}, 14 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{Ph}\right), 4.50,4.54(\mathrm{AB}$, $\left.\mathrm{J}_{\mathrm{A}, \mathrm{B}}=12.8 \mathrm{~Hz}, 14 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{Ph}\right), 4.81,5.11\left(\mathrm{AB}, \mathrm{J}_{\mathrm{A}, \mathrm{B}}=11.0 \mathrm{~Hz}, 14 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{Ph}\right), 5.22\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{1,2}=3.3 \mathrm{~Hz}, 7 \mathrm{H} ; 1-\right.$ H), 7.15-7.30 (m, 105 H ; aromatic-H) ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl} 3$): $\delta=69.2,71.4,72.6,73.2,75.4$, $78.6,78.7,80.8,98.4,126.9-128.3,138.1,138.3,139.2 \mathrm{ppm}$; MS (MALDI-TOF): $\mathrm{m} / \mathrm{z}=3050.49[\mathrm{M}+\mathrm{Na}]^{+}$ (Calculated for $\mathrm{C}_{189} \mathrm{H}_{196} \mathrm{O}_{35}+\mathrm{Na}+=3050.55$).

Reaction 2: Synthesis of Mono-debenzylated $\boldsymbol{\beta}$-cyclodextrin:

To a stirred solution of perbenzylated β-cyclodextrin ($600 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0 \mathrm{eq}$.) in anhydrous toluene (65 mL) under nitrogen, diisobutylaluminum hydride (DIBAL-H) ($4.7 \mathrm{~mL}, 7.0 \mathrm{mmol}, 35 \mathrm{eq}$.) was added dropwise to a final concentration of 0.1 M . The reaction mixture was allowed to stir for 2 hours at room temperature, after which the complete disappearance of starting material was observed via TLC analysis ($25 \% \mathrm{v} / \mathrm{v}$ ethyl acetate/hexane). The reaction mixture was cooled to $0^{\circ} \mathrm{C}$ and hydrolyzed via the addition of 10% aqueous $\mathrm{HCl}(15 \mathrm{~mL})$ for 15 minutes. The crude product was extracted with ethyl acetate (100 mL), treated with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and dried under reduced pressure. Purification via column chromatography (1:3 ethyl acetate/hexane gradient elution) led to a white compound, mono-debenzylated β-cyclodextrin ($250 \mathrm{mg}, 40$ \% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3$): $\delta=2.48$ (br s, $1 \mathrm{H} ; \mathrm{OH}$), 3.34-4.07 (m, $42 \mathrm{H} ; 7 \mathrm{x} 2-\mathrm{H}$, $7 \mathrm{x} 3-\mathrm{H}, 7 \mathrm{x} 4-\mathrm{H}, 7 \mathrm{x} 5-\mathrm{H}, 14 \mathrm{x} 6-\mathrm{H}$), 4.27-4.51 (m, 24H; CH2 Ph), 4.60-4.75 (m, 10H; CH2 Ph), 4.88-5.01 (m, $6 \mathrm{H} ; 6 \mathrm{x} 1-\mathrm{H}$), $5.08-5.18\left(\mathrm{~m}, 4 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{Ph}\right), 5.25\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{1,2}=12.0,4.0 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{Ph}\right), 5.36\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{1,2}=4.0 \mathrm{~Hz}\right.$, $1 \mathrm{H} ; 1 \mathrm{x} 1-\mathrm{H}), 7.04-7.30\left(\mathrm{~m}, 100 \mathrm{H}\right.$; aromatic-H) ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl} 3$): $\delta=61.6,68.8,69.2$, 69.3, 69.4, 71.4, 71.5, 71.6, 71.7, 71.7, 71.8, 71.9, 72.5, 72.6, 72.7, 72.7, 72.9, 73.0, 73.3, 73.4, 73.4, 74.8, $75.0,75.1,75.3,75.8,75.9,75.9,76.0,77.4,77.7,78.1,78.8,79.0,79.1,79.5,79.6,79.9,80.1,80.9,81.0$, $81.0,81.1,98.0,98.3,98.4,98.4,98.6,98.8,98.9,127.0-128.4,137.9,138.1,138.2,138.2,138.2,138.3$, 138.3, 138.4, 138.5, 138.5, 139.0, 139.1, 139.3, 139.3, 139.4, 139.4 ppm ; MS (MALDI-TOF): $\mathrm{m} / \mathrm{z}=$ $2960.29[\mathrm{M}+\mathrm{Na}]^{+}\left(\right.$Calculated for $\left.\mathrm{C}_{182} \mathrm{H}_{190} \mathrm{O}_{35}+\mathrm{Na}=2960.43\right)$.

Reaction 3: Synthesis of Di-debenzylated $\boldsymbol{\beta}$-cyclodextrin:

To a stirred solution of perbenzylated β-cyclodextrin ($1.2 \mathrm{~g}, 0.4 \mathrm{mmol}, 1.0$ eq.) under nitrogen, DIBAL-H ($4.0 \mathrm{~mL}, 6.0 \mathrm{mmol}, 15 \mathrm{eq}$.) was added dropwise. The reaction mixture was stirred for 6 hours at $50^{\circ} \mathrm{C}$ until a complete disappearance of starting material was observed via TLC analysis. After an additional 15 minutes of stirring, the reaction mixture was cooled to $0^{\circ} \mathrm{C}$ and hydrolyzed by vigorously stirring with 10 $\%$ aqueous $\mathrm{HCl}(15 \mathrm{~mL})$ for 20 minutes. The crude product was extracted with ethyl acetate (100 mL), treated with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and dried under reduced pressure. Purification via column chromatography (1:3 ethyl acetate/hexanes) led to a white compound di-debenzylated β-cyclodextrin ($566 \mathrm{mg}, 50 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.69$ (br s, $1 \mathrm{H} ; \mathrm{OH}$), 2.78 (br s, $1 \mathrm{H} ; \mathrm{OH}$), $3.44-3.54(\mathrm{~m}, 5 \mathrm{H} ; 5 \mathrm{x} 2-\mathrm{H}$), $3.60-4.15(\mathrm{~m}, 37 \mathrm{H} ; 2 \times 2-\mathrm{H}, 7 \mathrm{x} 3-\mathrm{H}, 7 \mathrm{x} 4-\mathrm{H}, 7 \mathrm{x} 5-\mathrm{H}, 14 \times 6-\mathrm{H}), 4.44-4.88\left(\mathrm{~m}, 33 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{Ph}\right), 4.89\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{1,2}=\right.$ $3.3 \mathrm{~Hz}, 1 \mathrm{H} ; 1-\mathrm{H}), 4.98\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{1,2}=3.7 \mathrm{~Hz}, 1 \mathrm{H} ; 1-\mathrm{H}\right), 5.00\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{1,2}=4.0 \mathrm{~Hz}, 1 \mathrm{H} ; 1-\mathrm{H}\right), 5.02\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{1,2}=3.4 \mathrm{~Hz}\right.$, $1 \mathrm{H} ; 1-\mathrm{H}), 5.04\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{1,2}=3.5 \mathrm{~Hz}, 1 \mathrm{H} ; 1-\mathrm{H}\right), 5.06\left(\mathrm{~d},{ }^{2} \mathrm{~J}=12.3 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{Ph}\right), 5.21-5.25(\mathrm{~m}, 3 \mathrm{H} ;$ $\left.3 \mathrm{xCH} \mathrm{P}_{2} \mathrm{Ph}\right), 5.30\left(\mathrm{~d},{ }^{2} \mathrm{~J}=10.7 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{Ph}\right), 5.56\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{1,2}=3.8 \mathrm{~Hz}, 1 \mathrm{H} ; 1-\mathrm{H}\right), 5.67\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{1,2}=3.7 \mathrm{~Hz}, 1 \mathrm{H}\right.$; 1-H), 7.12-7.33 (m, 95 H ; aromatic-H) ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=61.6,69.5,69.6,71.2,71.6$, $72.0,72.1,72.9,73.2,73.25,73.3,73.9,74.1,76.1,76.4,77.6,79.0,79.7,80.6,80.9,81.0,81.6,81.7,97.6$, 97.7, 98.2, 126.3-128.3, 137.7, 137.8, 137.9, 138.2, 138.6, 137.7, 139.2 ppm; MS (MALDI-TOF): m/z = $2870.1[\mathrm{M}+\mathrm{Na}]^{+}\left(\right.$Calculated for $\left.\mathrm{C}_{175} \mathrm{H}_{184} \mathrm{O}_{35}+\mathrm{Na}=2870.31\right)$.

Reaction 4: Synthesis of Sensor S2:

A mixture of mono-debenzylated β-cyclodextrin ($100 \mathrm{mg}, 0.034 \mathrm{mmol}, 1.0$ eq.), carboxylic acid functionalized fluorophore ($10.5 \mathrm{mg}, 0.04 \mathrm{mmol}, 1.17 \mathrm{eq}$.), N, N '-dicyclohexylcarbodiimide (DCC) (8.3 $\mathrm{mg}, 0.04 \mathrm{mmol}, 1.17 \mathrm{eq}$.$) and 4$-dimethylaminopyridine (DMAP) ($0.5 \mathrm{mg}, 0.004 \mathrm{mmol}, 0.1 \mathrm{eq}$.) in
dichloromethane (1 mL) was stirred at $50^{\circ} \mathrm{C}$ for 24 hrs . The mixture was filtered, treated with 5% aqueous acetic acid ($2 \times 3 \mathrm{~mL}$) and extracted with dichloromethane ($2 \times 4 \mathrm{~mL}$). The combined organic layer was dried under anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and subjected to solvent removal under reduced pressure. The crude product was purified via column chromatography ($1: 3$ ethyl acetate/hexanes) to yield a white amorphous compound sensor S2 ($32 \mathrm{mg}, 30 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (500 MHz , d_{6}-acetone): $\delta=2.31\left(\mathrm{~s}, 3 \mathrm{H}\right.$; ArCH_{3}), $2.62(\mathrm{~m}, 2 \mathrm{H}$; $\mathrm{CH}_{2} \mathrm{FL} 3$), $2.93\left(\mathrm{t},{ }^{3} \mathrm{~J}_{1,2}={ }^{3} \mathrm{~J}_{1,2}=10.0 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CHFL} 3\right), 3.43-3.50(\mathrm{~m}, 7 \mathrm{H} ; 2-\mathrm{H}), 3.62-3.74(\mathrm{~m}, 7 \mathrm{H} ; 6-$ H), 3.84 (br t, $2 \mathrm{H} ; 6-\mathrm{H}$), $3.89\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{OCH}_{3}\right.$), 3.92-4.16 (m, $\left.26 \mathrm{H} ; 3-\mathrm{H}, 4-\mathrm{H}, 5-\mathrm{H}, 6-\mathrm{H}\right), 4.40-4.62(\mathrm{~m}, 26$ $\left.\mathrm{H} ; \mathrm{CH}_{2} \mathrm{Ph}\right)$, 4.75-4.78 (m, $7 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{Ph}$), 5.09-5.13 (m, $\left.7 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{Ph}\right), 5.16$ (d, ${ }^{3} \mathrm{~J}_{1,2}=3.5 \mathrm{~Hz}, 1 \mathrm{H} ; 1-\mathrm{H}$), 5.27 $\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{1,2}=10,3.5 \mathrm{~Hz}, 2 \mathrm{H} ; 1-\mathrm{H}\right), 5.30(\mathrm{~m}, 3 \mathrm{H} ; 1-\mathrm{H}), 5.33\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{1,2}=3.5 \mathrm{~Hz}, 1 \mathrm{H} ; 1-\mathrm{H}\right), 6.02(\mathrm{~s}, 1 \mathrm{H} ;$ $\mathrm{CH}=\mathrm{CCH}_{3}$), $6.86(\mathrm{~s}, 1 \mathrm{H} ; \mathrm{ArH}), 7.12-7.33(\mathrm{~m}, 80 \mathrm{H} ; \mathrm{PhH}), 7.48(\mathrm{~s}, 1 \mathrm{H} ; \mathrm{ArH}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (125 MHz , d_{6}-acetone): $\delta=17.8,25.3,33.6,55.7,63.5,69.5,69.8,71.7,71.9,72.4,72.7,73.0,75.2,78.3-79.4,80.8-$ 81.1, $97.8-98.0,98.2,98.7,98.7,111.5,112.8,124.5,125.6,126.8,127.29-128.25,138.6,138.7-138.8$, $139.5-139.6,152.8,154.3,160.1,160.6,172.0 \mathrm{ppm} ; \mathrm{MS}$ (MALDI-TOF): m/z $=3204.57[\mathrm{M}+\mathrm{Na}]^{+}$ (Calculated for $\mathrm{C}_{196} \mathrm{H}_{202} \mathrm{O}_{39}+\mathrm{Na}=3204.67$).

Reaction 5: Synthesis of Sensor S3:

A mixture of di-debenzylated β-cyclodextrin ($100 \mathrm{mg}, 0.035 \mathrm{mmol}, 1.0 \mathrm{eq}$.), carboxylic acid functionalized fluorophore ($21.0 \mathrm{mg}, 0.08 \mathrm{mmol}, 2.34 \mathrm{eq}$.), N, N '-dicyclohexylcarbodiimide ($16.5 \mathrm{mg}, 0.08 \mathrm{mmol}, 2.34$ eq.) and 4-dimethylaminopyridine ($1.1 \mathrm{mg}, 0.008 \mathrm{mmol}, 0.2$ eq.) in dichloromethane (1 mL) was stirred at $50^{\circ} \mathrm{C}$ for 24 hrs . The mixture was filtered, treated with 5% aqueous acetic acid ($2 \times 3 \mathrm{~mL}$) and extracted with dichloromethane ($2 \times 4 \mathrm{~mL}$). The combined organic layer was dried under anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and subjected to solvent removal under reduced pressure. The crude product was purified via column chromatography (1:3 ethyl acetate: hexanes) to lead to a white amorphous compound Sensor $\mathbf{S 3}$ (30 mg , 25% yield). ${ }^{1} \mathrm{H}$ NMR (500 MHz , d_{6}-acetone): $\delta=2.31$ ($\mathrm{s}, 6 \mathrm{H}$; ArCH_{3}), 2.62 ($\mathrm{m}, 4 \mathrm{H}$; CHFL3), 2.93 (m, 4 H; CHCHFL3), 3.44-3.51 (m, $7 \mathrm{H} ; 2-\mathrm{H}$), 3.62-3.74 (m, $7 \mathrm{H} ; 6-\mathrm{H}$), 3.82-3.89 (multiplet overlapped, $4 \mathrm{H} ; 6$ 6H), 3.89 (singlet overlapped, $6 \mathrm{H} ; \mathrm{OCH}_{3}$), 3.94-4.16 (m, $24 \mathrm{H} ; 3-\mathrm{H}, 4-\mathrm{H}, 5-\mathrm{H}, 6-\mathrm{H}$), 4.41-4.64 (m, 26H; $\mathrm{CH}_{2} \mathrm{Ph}$), 4.74-4.78 (m, 6H; CH2Ph), 5.08-5.12 (m, 6H; CH2Ph), $5.22\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{1,2}=8.5,3.5 \mathrm{~Hz}, 2 \mathrm{H} ; 1-\mathrm{H}\right), 5.26$ (m, $3 \mathrm{H} ; 1-\mathrm{H}), 5.29$ (m, $2 \mathrm{H} ; 1-\mathrm{H}), 6.01$ (s, $2 \mathrm{H} ; \mathrm{CH}=\mathrm{CCH}_{3}$), 6.86 ($\mathrm{s}, 2 \mathrm{H} ; \mathrm{ArH}$), 7.06-7.30 (m, $80 \mathrm{H} ; \mathrm{PhH}$), 7.46 (d, ${ }^{3} \mathrm{~J}_{1,2}=6.5 \mathrm{~Hz}, 2 \mathrm{H}$; ArH) ppm; ${ }^{13} \mathrm{C}$ NMR (125 MHz , d_{6}-acetone): $\delta=17.8,24.6,25.2-25.4,25.6$, $25.8,30.6,32.1,33.5,34.1,55.7,63.5,69.3-69.8,71.6-73.1,75.2,78.3-79.4,80.7-81.0,97.9-98.7,111.5$, 112.7, 125.4-125.5, 126.8, 127.3-128.3, 138.6, 138.7-138.8, 139.4-139.6, 152.7, 154.3, 160.0, 160.6, 172.1 ppm; MS (MALDI-TOF): $\mathrm{m} / \mathrm{z}=3358.82[\mathrm{M}+\mathrm{Na}]^{+}$(Calculated for $\mathrm{C}_{203} \mathrm{H}_{208} \mathrm{O}_{43}+\mathrm{Na}=3358.40$).

DETAILED PROCEDURES FOR FLUORESCENCE MODULATION EXPERIMENTS

Fluorescence emission spectra were obtained using a Shimadzu RF-5301PC spectrophotofluorimeter with 3 nm excitation and 3 nm emission slit widths. In a quartz cuvette, 0.5 mL of $\mathbf{S} \mathbf{1}, \mathbf{S} 2$, or $\mathbf{S 3}$ solutions ($5 \mu \mathrm{M}$ in DMSO) and 2 mL of DI water were combined. Then, the solution was excited at 320 nm , and the fluorescence emission spectra were recorded. Repeat measurements were recorded for four separate trials.

The fluorescence emission spectra were integrated vs. wavenumber on the X-axis, and fluorescence modulation was measured by the ratio of integrated emission of the fluorophore in the presence of the analyte to integrated emission of the fluorophore in the absence of the analyte, as shown in Equation 1:

Fluorescence Modulation $=F l_{\text {analyte }} / F l_{\text {blank }}$
Where $F l_{\text {analyte }}$ is the integrated fluorescence emission of the fluorophore in the presence of $10 \mu \mathrm{~L}$ of analyte ($1 \mathrm{mg} / \mathrm{mL}$ in THF), and $F l_{\text {blank }}$ is the integrated fluorescence emission of the fluorophore in the absence of the analyte.

DETAILED PROCEDURES FOR ARRAY GENERATION EXPERIMENTS

Array analysis was performed using SYSTAT 13 statistical computing software with the following settings:
(a) Classical Discriminant Analysis
(b) Grouping Variable: Analytes
(c) Predictors: S1, S2, and $\mathbf{S 3}$
(d) Long-Range Statistics: Mahal

DETAILED PROCEDURES FOR LIMIT OF DETECTION EXPERIMENTS

The limit of detection (LOD) is defined as the lowest concentration of analyte at which a signal can be detected. To determine this value, the following steps were performed for each cyclodextrin-analyte combination. In a quartz cuvette, 0.5 mL of $\mathbf{S} 1, \mathbf{S 2}$, or $\mathbf{S 3}$ solutions ($5 \mu \mathrm{M}$ in DMSO) and 2 mL of deionized (DI) water were combined. Then, the solution was excited at 320 nm , and the fluorescence emission spectra were recorded starting at 330 nm . Six repeat measurements were taken.

Next, $2 \mu \mathrm{~L}$ of analyte ($1 \mathrm{mg} / \mathrm{mL}$ in THF) was added, and again the solution was excited at the fluorophore's excitation wavelength, and the fluorescence emission spectra were recorded. Six repeat measurements were taken. This step was repeated for $4 \mu \mathrm{~L}$ of analyte, $6 \mu \mathrm{~L}$ of analyte, $8 \mu \mathrm{~L}$ of analyte, $10 \mu \mathrm{~L}$ of analyte, $12 \mu \mathrm{~L}$ of analyte, $14 \mu \mathrm{~L}$ of analyte, $16 \mu \mathrm{~L}$ of analyte, $18 \mu \mathrm{~L}$ of analyte, $20 \mu \mathrm{~L}$ of analyte.

All of the fluorescence emission spectra were integrated vs. wavenumber on the X -axis, and calibration curves were generated. The curves plotted the analyte concentration in $\mu \mathrm{M}$ on the X -axis, and the fluorescence modulation ratio on the Y -axis. The curve was fitted to a straight line and the equation of the line was determined.

The limit of detection is defined according to Equation S2:
$\mathrm{LOD}=3\left(\mathrm{SD}_{\text {blank }}\right) / m$
Where $\mathrm{SD}_{\text {blank }}$ is the standard deviation of the blank sample and m is the slope of the calibration curve. In cases where the slope of the trendline was negative, the absolute value of the slope was used to calculate the LOD. In all cases, the LOD was calculated in $\mu \mathrm{M}$.

DETAILED PROCEDURES FOR THE HPLC ANALYSIS OF S2 AND S3

The HPLC analysis of the cyclodextrin-fluorophore covalent hosts was performed on a Waters Acquity ${ }^{\circledR}$ Arc ${ }^{\mathrm{TM}}$ system using a Waters 2998 Photo Diode Array (PDA) detector and a Cortecs ${ }^{\circledR}$ C18 $2.7 \mu \mathrm{~m}$ $4.6 \times 50 \mathrm{~mm}$ column. The solvent systm was an isocratic solution of 0.1% formic acid in acetonitrile, run at a rate of $1 \mathrm{~mL} /$ minute for 5 minutes. All samples were prepared in the same solution of 0.1% formic acid in acetonitrile. The PDA detector was set to collect from 210-400 nm.

SUMMARY TABLES

FLUORESCENCE MODULATION SUMMARY TABLES

Analyte	S1	S2	S3
benzyl alcohol	1.00 ± 0.00	1.04 ± 001	0.98 ± 0.01
o-cresol	1.01 ± 0.00	0.82 ± 0.01	0.88 ± 0.01
m-cresol	0.99 ± 0.00	0.90 ± 0.00	1.05 ± 0.02
p-cresol	1.01 ± 0.01	0.87 ± 0.01	0.75 ± 0.01

Analyte	S1	S2	S3
1-methylcyclohexanol	1.01 ± 0.00	0.89 ± 0.00	1.07 ± 0.05
cis -2-methylcyclohexanol	1.01 ± 0.00	0.90 ± 0.00	0.97 ± 0.01
cyclohexylmethanol	1.01 ± 0.00	0.99 ± 0.03	0.77 ± 0.06
trans-2-methylcyclohexanol	0.99 ± 0.00	0.89 ± 0.00	1.14 ± 0.01

Analyte	S1	S2	S3
DDD	1.00 ± 0.00	0.93 ± 0.01	1.33 ± 0.03
DDE	1.01 ± 0.00	0.95 ± 0.01	1.07 ± 0.04
$o, p-\mathrm{DDT}$	0.99 ± 0.01	1.08 ± 0.01	1.04 ± 0.05
$p, p-\mathrm{DDT}$	0.98 ± 0.01	1.17 ± 0.01	1.35 ± 0.05

Analyte	S1	S2	S3
n-hexanes	1.00 ± 0.00	1.01 ± 0.01	0.94 ± 0.02
2-methylpentane	1.05 ± 0.00	1.06 ± 0.00	0.93 ± 0.02
3-methylentane	0.98 ± 0.00	1.09 ± 0.01	0.95 ± 0.02
2,3-dimethylbutane	1.00 ± 0.00	0.99 ± 0.01	1.01 ± 0.01
1-methylcyclopentane	1.03 ± 0.01	1.03 ± 0.02	0.89 ± 0.01

Analyte	S1	S2	S3
PCB3	1.03 ± 0.00	1.06 ± 0.06	0.85 ± 0.01
PCB29	1.01 ± 0.01	1.02 ± 0.04	0.98 ± 0.03
PCB52	1.01 ± 0.00	1.07 ± 0.04	0.89 ± 0.02
PCB77	1.05 ± 0.00	0.56 ± 0.01	0.98 ± 0.01
PCB209	1.00 ± 0.01	0.92 ± 0.03	1.14 ± 0.02

LIMIT OF DETECTION SUMMARY TABLE

Analyte	Host	Equation	$\mathbf{R}^{\mathbf{2}}$	$\mathbf{L O D}(\boldsymbol{\mu} \mathbf{M})$
$p, p-$ DDT	S1	$\mathrm{y}=0.0094 \mathrm{x}+1.0385$	0.939	0.39
$p, p-$ DDT	S2	$\mathrm{y}=0.011 \mathrm{x}+0.971$	0.9406	0.51
$p, p-\mathrm{DDT}$	S3	$\mathrm{y}=0.0188 \mathrm{x}+0.9592$	0.9547	2.20
$o-$ Cresol	S1	$\mathrm{y}=0.0018 \mathrm{x}+1.0195$	0.9748	4.97
Benzyl alcohol	S2	$\mathrm{y}=0.0032 \mathrm{x}+0.932$	0.8521	8.34
o-Cresol	S3	$\mathrm{y}=-0.0026 \mathrm{x}+0.7242$	0.9893	11.79
Cyclohexylmethanol	S1	$\mathrm{y}=0.01 \mathrm{x}+0.9866$	0.9708	1.17
Cyclohexylmethanol	S2	$\mathrm{y}=-0.0031 \mathrm{x}+0.9648$	0.9405	1.85
1-Methylcyclohexanol	S3	$\mathrm{y}=0.0012 \mathrm{x}+0.942$	0.9236	26.30
2-Methylpentane	S1	$\mathrm{y}=0.0026 \mathrm{x}+0.9776$	0.9555	2.20
3-Methylpentane	S2	$\mathrm{y}=0.0017 \mathrm{x}+1.0775$	0.9864	15.74
1-Methylcyclopentane	S3	$\mathrm{y}=0.0038 \mathrm{x}+0.7209$	0.9421	19.82
PCB 77	S1	$\mathrm{y}=0.0116 \mathrm{x}+1.0153$	0.8832	0.29
PCB 209	S2	$\mathrm{y}=-0.0077 \mathrm{x}+0.8402$	0.9655	0.88
PCB 209	S3	$\mathrm{y}=0.0079 \mathrm{x}+1.0621$	0.8686	4.59

SUMMARY TABLES FOR ARRAYS

All analytes

Jackknifed Classification Matrix

	1-methylcyclohexanol	1-methylcyclopentane	2,3-dimethylbutane	2-methylpentane	3-methylpentane	DDD	DDE
1-methylcyclohexanol	4	0	0	0	0	0	0
1-methylcyclopentane	0	4	0	0	0	0	0
2,3-dimethylbutane	0	0	4	0	0	0	0
2-methylpentane	0	0	0	4	0	0	0
3-methylpentane	0	0	0	0	4	0	0
DDD	0	0	0	0	0	4	0
DDE	0	0	0	0	0	0	4
benzyl alcohol	0	0	0	0	0	0	0
cis-2methylcyclohexanol	0	0	0	0	0	0	0
cyclohexylmethanol	0	0	0	0	0	0	0
m-cresol	0	0	0	0	0	0	0
n-hexanes	0	0	0	0	0	0	0
o-cresol	0	0	0	0	0	0	0
opDDT	0	0	0	0	0	0	0
p-cresol	0	0	0	0	0	0	0
pcb209	0	0	0	0	0	0	0
pcb29	0	0	0	0	0	0	0
pcb3	0	0	0	0	0	0	0
pcb52	0	0	0	0	0	0	0
pcb77	0	0	0	0	0	0	0
ppDDT	0	0	0	0	0	0	0
trans-2methylcyclohexano	0	0	0	0	0	0	0
Total	4	4	4	4	4	4	4

Jackknifed Classification Matrix (Contd.)

	benzyl alcohol	cis-2methylcyclohexanol	cyclohexyimethanol	m-cresol	n-hexanes	o-cresol	opDDT	p-cresol	pcb209
1-methylcyclohexanol	0	0	0	0	0	0	0	0	0
1-methylcyclopentane	0	0	0	0	0	0	0	0	0
2,3-dimethylbutane	0	0	0	0	0	0	0	0	0
2-methylpentane	0	0	0	0	0	0	0	0	0
3-methylpentane	0	0	0	0	0	0	0	0	0
DDD	0	0	0	0	0	0	0	0	0
DDE	0	0	0	0	0	0	0	0	0
benzyl alcohol	4	0	0	0	0	0	0	0	0
cis-2methylcyclohexanol	0	4	0	0	0	0	0	0	0
cyclohexylmethanol	0	0	4	0	0	0	0	0	0
m-cresol	0	0	0	4	0	0	0	0	0
n-hexanes	0	0	0	0	4	0	0	0	0
o-cresol	0	0	0	0	0	4	0	0	0
opDDT	0	0	0	0	0	0	4	0	0
p-cresol	0	0	0	0	0	0	0	4	0
pcb209	0	0	0	0	0	0	0	0	4
pcb29	0	0	0	0	0	0	0	0	0
pcb3	0	0	0	0	0	0	0	0	0
pcb52	0	0	0	0	0	0	0	0	0
pcb77	0	0	0	0	0	0	0	0	0
ppDDT	0	0	0	0	0	0	0	0	0
trans-2methylcyclohexano	0	0	0	0	0	0	0	0	0
Total	4	4	4	4	4	4	4	4	4

Jackknifed Classification Matrix (Contd.)

	pcb29	pcb3	pcb52	pcb77	ppDDT	trans-2methylcy- clohexano	\%correct
1-methylcyclohexanol	0	0	0	0	0	0	100
1-methylcyclopentane	0	0	0	0	0	0	100
2,3-dimethylbutane	0	0	0	0	0	0	100
2-methylpentane	0	0	0	0	0	0	100
3-methylpentane	0	0	0	0	0	0	100
DDD	0	0	0	0	0	0	100
DDE	0	0	0	0	0	0	100
benzyl alcohol	0	0	0	0	0	0	100
cis-2methylcyclohexanol	0	0	0	0	0	0	100
cyclohexylmethanol	0	0	0	0	0	0	100
m-cresol	0	0	0	0	0	0	100
n-hexanes	0	0	0	0	0	0	100
o-cresol	0	0	0	0	0	0	100
opDDT	0	0	0	0	0	0	100
p-cresol	0	0	0	0	0	0	100
pcb209	0	0	0	0	0	0	100
pcb29	4	0	0	0	0	0	100
pcb3	0	4	0	0	0	0	100
pcb52	0	0	4	0	0	0	100
pcb77	0	0	0	4	0	0	100
ppDDT	0	0	0	0	4	0	100
trans-2methylcyclohexano	0	0	0	0	0	0	100
Total	4	4	4	4	4	0	100

Cumulative Proportion of Total Dispersion

0.908	0.994	1.000

Aromatics

Jackknifed Classification Matrix

	benzyl alcohol	m-cresol	o-cresol	p-cresol	\%correct
benzyl alcohol	4	0	0	0	100
m-cresol	0	4	0	0	100
o-cresol	0	0	4	0	100
p-cresol	0	0	0	4	100
Total	4	4	4	4	100

Cumulative Proportion of Total Dispersion

0.859	0.950	1.000

Pesticides

Jackknifed Classification Matrix

	DDD	DDE	opDDT	ppDDT	\%correct
DDD	4	0	0	0	100
DDE	0	4	0	0	100
opDDT	0	0	4	0	100
ppDDT	0	0	0	4	100
Total	4	4	4	4	100

Cumulative Proportion of Total Dispersion

0.995	1.000	1.000

Alkanes
Jackknifed Classification Matrix

	1-methylcyclope- ntane	2,3-dimethylbut- ane	2-methylpentane	3-methylpentane	n-hexanes	\%correct
1-methylcyclopentane	4	0	0	0	0	100
2,3-dimethylbutane	0	4	0	0	0	100
2-methylpentane	0	0	4	0	0	100
3-methylpentane	0	0	0	4	0	100
n-hexanes	0	0	0	0	4	100
Total	4	4	4	4	4	100

Cumulative Proportion of Total Dispersion

0.767	0.930	1.000

Aliphatic alcohols
Jackknifed Classification Matrix

	1-methylcyclohe- xanol	cis-2methylcycl- ohexanol	cyclohexylmetha- nol	trans-2methylcy- clohexano	\%correct
1-methylcyclohexanol	4	0	0	0	100
cis-2methylcyclohexanol	0	4	0	0	100
cyclohexylmethanol	0	0	4	0	100
trans-2methylcyclohexano	0	0	0	4	100
Total	4	4	4	4	100

Cumulative Proportion of Total Dispersion

0.775	0.990	1.000

PCBs

Jackknifed Classification Matrix

	pcb209	pcb29	pcb3	pcb52	pcb77	\%correct
pcb209	4	0	0	0	0	100
pcb29	0	4	0	0	0	100
pcb3	0	0	4	0	0	100
pcb52	0	0	0	4	0	100
pcb77	0	0	0	0	4	100
Total	4	4	4	4	4	100

Cumulative Proportion of Total Dispersion

0.806	0.996	1.000

1:1 binary mixtures of analytes 5-8

Jackknifed Classification Matrix

	BA-M	BA-O	BA-P	M-P	O-M	O-P	\%correct
BA-M	2	0	0	0	0	2	50
BA-O	0	4	0	0	0	0	100
BA-P	1	0	3	0	0	0	75
M-P	0	0	0	4	0	0	100
O-M	0	0	0	0	4	0	100
O-P	1	0	0	0	0	3	75
Total	4	4	3	4	4	5	83

Cumulative Proportion of Total Dispersion

0.889	0.981	1.000

SUMMARY FIGURES

SUMMARY FIGURES FOR HPLC ANALYSIS OF COMPOUNDS S2 AND S3

SUMMARY FIGURES FOR FLUORESCENCE MODULATION

o-Cresol

m-Cresol

p-Cresol

DDD

DDE

$o, p-\mathrm{DDT}$

2-Methylpentane

2,3-Dimethylbutane

1-Methylcyclopentane

1-Methylcyclohexanol

cis-2-Methylcyclohexanol

trans-2-Methylcyclohexanol

PCB3

PCB29

PCB52

PCB77

PCB209

SUMMARY FIGURES FOR LIMIT OF DETECTION EXPERIMENTS

o-Cresol-S1

Benzyl alcohol-S2

o-Cresol-S3

Cyclohexylmethanol-S1

Cyclohexylmethanol-S2

1-Methylcyclohexanol-S3

PCB77-S1

PCB209-S2

PCB209-S3

2-Methylpentane - S1

3-Methylpentane - S2

1-Methylcyclopentane - S3

SUMMARY FIGURES FOR ARRAY GENERATION EXPERIMENTS

All Analytes

ANALYTE\$

n-hexanes	\circ 1-methylcyclohexanol
- o-cresol	\times 1-methylcyclopentane
\| opDDT	+ 2,3-dimethylbutane
p-cresol	Δ 2-methylpentane
$*$ pcb209	3-methylpentane
* pcb29	DDD
pcb3	\triangleright DDE
pcb52	\square benzyl alcohol
pcb77	cis-2methylcyclohexanol
ppDDT	cyclohexylmethanol
in trans-2methylcyclohexano \quad m-cresol	

Aromatics

ANALYTE\$

- benzyl alcohol
$\times \mathrm{m}$-cresol
o-cresol
\triangle p-cresol

Pesticides

ANALYTE\$

- DDD
\times DDE
opDDT
\triangle ppDDT

Alkanes

ANALYTE\$

- 1-methylcyclopentane
\times 2,3-dimethylbutane
+ 2-methylpentane
\triangle 3-methylpentane
∇ n-hexanes

Alcohols

ANALYTE\$

- 1-methylcyclohexanol
\times cis-2methylcyclohexanol
+ cyclohexylmethanol
Δ trans-2methylcyclohexano

PCBs

1:1 binary mixtures of analytes 5-8

ANALYTE \$

- BA-M
$\times \mathrm{BA}-\mathrm{O}$
$+B A-P$
$\triangle M-P$
O-M
O-P

NMR SPECTRA OF ALL NEW COMPOUNDS

Compound 2

${ }^{1} \mathrm{H}$ NMR
(
${ }^{13} \mathrm{C}$ NMR

COSY NMR

Compound 3
${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

COSY NMR

SPECTROSCOPIC INVESTIGATIONS OF SENSORS S1-S3

ABSORPTION SPECTRA

UV-Visible Absorption Spectra of $\mathbf{S 2}$ and $\mathbf{S 3}(1 \mu \mathrm{M})$ in DMSO measured at room temperature:

VARIATION OF FLUORESCENCE EMISSION OF SENSORS IN H $\mathbf{H}_{2} \mathrm{O} /$ DMSO MIXTURES

Fluorescence emission spectra of $\mathbf{S 1}, \mathbf{S} 2$ and $\mathbf{S 3}$ (at $1 \mu \mathrm{M}$ concentration) in $80: 20\left(\mathrm{H}_{2} \mathrm{O}\right.$: DMSO) (black trace), 60:40 ($\mathrm{H}_{2} \mathrm{O}:$ DMSO) (red trace), 40:60 $\left(\mathrm{H}_{2} \mathrm{O}:\right.$ DMSO) (blue trace), 20:80 ($\mathrm{H}_{2} \mathrm{O}:$ DMSO) (purple trace), 0:100 ($\mathrm{H}_{2} \mathrm{O}: \mathrm{DMSO}$) (green trace). ($\lambda_{\text {ex }}=320 \mathrm{~nm}$). All spectra were recorded at room temperature.

BENESI-HILDEBRAND PLOTS FOR NMR TITRATION

Analyte $5\left(0.2 \mathrm{M}\right.$ in $\left.0.4 \mathrm{~mL} \mathrm{D}_{2} \mathrm{O}\right)$ was titrated against $0 \mu \mathrm{~L}, 10 \mu \mathrm{~L}, 20 \mu \mathrm{~L}, 25 \mu \mathrm{~L}, 30 \mu \mathrm{~L}, 35 \mu \mathrm{~L}, 40 \mu \mathrm{~L}, 50$ $\mu \mathrm{L}, 60 \mu \mathrm{~L}, 80 \mu \mathrm{~L}$ and $100 \mu \mathrm{~L}$ of the host ($1 \mathrm{mg} / \mathrm{mL}$ dissolved in d_{6}-DMSO) in a clean dry NMR tube. The volume was adjusted to 0.5 mL final volume with the addition of d_{6}-DMSO. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of the samples were recorded in 300 MHz Bruker AVANCE NMR Spectrometer at room temperature. The chemical shift of benzylic protons (highlighted in red in the figure below) were tracked, and the data was used to solve the Benesi-Hildebrand equation, below.

Benesi-Hildebrand Equation:
$1 / \Delta \delta=\left(1 / \mathrm{K}_{\mathrm{a}} \Delta \delta_{\max }\right) 1 /[\mathrm{H}]+\left(1 / \Delta \delta_{\max }\right)$
(Eq. S3)

1/[Host] (M^{-1})

Host	Equation	$\mathrm{K}_{\mathrm{a}}\left(\mathrm{M}^{-1}\right)$	$\Delta \delta_{\max }(\mathrm{ppm})$
$\mathbf{1}$	$\mathrm{y}=0.0045 \mathrm{x}+162.97$	$3.6(0.1) \times 10^{4}$	0.0061
$\mathbf{2}$	$\mathrm{y}=0.0024 \mathrm{x}+116.62$	$4.8(0.5) \times 10^{4}$	0.0085
$\mathbf{3}$	$\mathrm{y}=0.0007 \mathrm{x}+173.27$	$24.9(0.5) \times 10^{4}$	0.0057

Benesi-Hildebrand plots for association constant calculations of analyte $\mathbf{5}$ with compounds $\mathbf{1 , 2}$ and $\mathbf{3}$ in 80:20 water-DMSO at room temperature. (H is the host; K_{a} is association constant; $\Delta \delta_{\text {max }}$ is maximum peak shift at infinite host concentration $[\mathrm{H}]=\infty ; \Delta \delta$ is the peak shift at a given host concentration. Values in parentheses indicate to the error in the K_{a} values from linear fit of the data points.)

