Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Supporting Information

Facile and green synthesis of MIL-100(Fe) with high-yield and its

catalytic performance

Le Han^a, Hui Qi^b, Dan Zhang^a, Gan Ye^a, Ying Mao^a, Wei Zhou^c, Changmin Hou^d, Yinyong Sun^{a,*}, Wei Xu^d

 ^aMIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
^bThe Second Hospital of Jilin University, Changchun, 130041, China
^cKey Laboratory of Functional Inorganic Material Chemistry, Heilongjiang University, Ministry of Education, Harbin, 150080, China
^dState Key Lab of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China

*To whom correspondence should be addressed. Tel: 86 451 86413708 E-mail: <u>yysun@hit.edu.cn</u>

Samples ^a	$S_{BET}(m^2/g)$	V _{Total} (cm ³ /g)	Product yield (%)
MIL-100(Fe)-1.0-4-160	1649	0.85	91
MIL-100(Fe)-1.5-4-160	1940	0.96	93
MIL-100(Fe)-2.0-4-160	1538	0.83	91
MIL-100(Fe)-1.5-4-100	1317	0.66	92
MIL-100(Fe)-1.5-4-130	1864	0.88	89
MIL-100(Fe)-1.5-1-160	1656	0.79	87
MIL-100(Fe)-1.5-2-160	1780	0.88	81
MIL-100(Fe)-1.5-8-160	1849	0.93	91
MIL-100(Fe)-1.5-12-160	1796	0.91	89
MIL-100(Fe)-1.5-14-160	1708	0.83	81

Table S1. Textural properties and product yield of MIL-100(Fe) prepared under various conditions.

Table S2. Elemental content in MIL-100(Fe)-S and MIL-100(Fe)-H.

Samples	Fe (wt/%) ^a	C (wt/%) ^a	O (wt/%) ^a
MIL-100(Fe)-S	10.8	53.7	35.5
MIL-100(Fe)-H	9.4	62.2	28.4
^a Magurad by EDV			

^a Measured by EDX.

Figure S1. XRD patterns of MIL-100(Fe) prepared by using different iron precursors.

Figure S2. N₂ sorption isotherms of MIL-100(Fe) prepared by using different iron precursors.

Figure S3. XRD patterns of MIL-100(Fe) prepared for different crystallization time.

Figure S4. N₂ sorption isotherms of MIL-100(Fe) prepared for different crystallization time.

Figure S5. XRD patterns of MIL-100(Fe) prepared at different crystallization temperatures.

Figure S6. N₂ sorption isotherms of MIL-100(Fe) prepared at different crystallization temperatures.

Figure S7. XRD patterns of MIL-100(Fe) prepared at different Fe/BTC molar ratios.

Figure S8. N₂ sorption isotherms of MIL-100(Fe) prepared at different Fe/BTC molar ratios.

Figure S9. XRD patterns of fresh and reused MIL-100(Fe)-S.

Figure S10. N₂ sorption isotherms of fresh and reused MIL-100(Fe)-S.