Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Supporting Information

Facile synthesis of Nickel oxide thin films from PVP encapsulated Nickel sulfide thin films: An efficient material for electrochemical sensing of glucose, hydrogen peroxide and photodegradation of dye

Sumanta Jana^a, Gopinath Mondal^{bc}, Pulakesh Bera^c, Bibhas Chandra Mitra^b, Biswajit Chakraborty^d, Anup Mondal^{b*}, Ashutosh Ghosh^{a*}

^aDepartment of Chemistry, University of Calcutta, University College of Science, 92, A. P. C. Road, Kolkata 700009, India.

^bDepartment of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, WB, India

^{bc}Department of Chemistry and Physics, Panskura Banamali College, Vidyasagar University, East Midnapur, Pin-721152, WB, India

^dDepartment of Chemistry, Vivekananda Mahavidyalaya, Burdwan 713103, WB, India *corresponding author Email:

Ghosh_59@yahoo.com (A. Ghosh), anupmondal2000@yahoo.co.in (A.Mondal)

Fig. S1 XRD pattern of NiS-PVP annealed at 250 °C

Fig. S2 EDAX of NiO thin film

Table S1: Performances of the proposed sensor with other glucose sensors based on nickel contained materials

Table S2: Performances of the proposed sensor with other H₂O₂ sensors

Fig. S2

Table	S1:
-------	------------

Electrode	Detection	Sensitivity Linear range (µM)		References
	limit (µM)	$(\mu A/mM/cm^2)$		
Nickel electrode	40	-	100-2500	34
Ni(OH) ₂ /CILE ^a	6	202 50–2300		35
Ni nanowire	0.1	1043	0.5–7000	36
arrays/GCE				
NiO/CPE ^b	0.3	-	1-1000	37
NiO/OMC/GCE ^c	0.65	834.8	2-1000	38
$NiO - MF^d$	0.033	1785.41	-	39
CuO-NiO-MFs	1×10 ⁻³	3165.53 3×10^{-6}		40
			to $0.51 \times 10^{-3} M$	
NiO/ITO	4.6	1013.76	2×10^{-6} to 2.97 \times	This work
			$10^{-4} \mathrm{M}$	

^aCarbon ionic liquid electrode ^bCarbon paste electrode ^cOrdered mesoporous carbon ^dMicrofiber

Table S2:

Electrode	Applied potential (V)	Detection limit (µM)	Sensitivity	Linear range	Reference
HRP	-	1.6	12.8 μA mM ⁻¹	4 μM to 100 μM	44
AgNPs/ZnONRs/FTO	- 0.55 (vs. Ag/AgCl)	0.9	152.1 μA mM ⁻¹	8 µM to 983 µM	45
ZnO/Au/Nafion/HRP/GCE	- 0.3 (vs. Ag/AgCl)	9.0	-	15 μM to 1.1 mM	46
Cu ₂ S/OMCs/Nafion/GCE	– 0.1 (vs. Ag/AgCl)	0.2	36.8 μA mM ⁻¹	1 μM to 3.03 mM	47
Co ₃ O ₄ /GCE	– 0.2 (vs. Ag/AgCl)	10	4.84 μA mM ⁻¹	0 μM to 5.35 mM	48
FeS/GCE	- 0.4 (vs. Ag/AgCl)	0.092	-	0.5 μM to 150 μ M	49
NiO/ITO	-0.46 (vs. Ag/AgCl)	5.2	82.73 μA mM ⁻¹	10 μM– 870 μM	This work