Supporting Information

M_xNi_{100-x} (M = Ag, and Co) Nanoparticles Supported on CeO₂ Nanorods Derived from Ce-Metal Organic Frameworks as an Effective Catalyst for Reduction of Organic Pollutants: Langmuir-Hinshelwood Kinetics and Mechanism

Mona Kohantorabi, Mohammad Reza Gholami*

Department of Chemistry, Sharif University of Technology, Tehran, 11365-11155, Iran

*E-mail: <u>gholami@sharif.ir</u>

Figure S1. Nitrogen adsorption-desorption isotherms of $Ag_{80}Ni_{20}$ @CeO₂ nanocomposite at 77

K.

Figure S2. UV-vis absorption spectra of the catalytic reduction of 4-NP by NaBH₄ in the presence of: (A) Ag@CeO₂; (B) Ag₈₀Ni₂₀@CeO₂; (C) Ag₆₀Ni₄₀@CeO₂; (D) Ag₄₀Ni₆₀@CeO₂; (E) Ag₂₀Ni₈₀@CeO₂, and (F) Ni@CeO₂.

Figure S3. UV-vis absorption spectra of the catalytic reduction of 4-NP by NaBH₄ in the presence of: (A) Co@CeO₂; (B) Co₈₀Ni₂₀@CeO₂; (C) Co₆₀Ni₄₀@CeO₂; (D) Co₄₀Ni₆₀@CeO₂; (E) Co₂₀Ni₈₀@CeO₂, and (F) Ni@CeO₂.

Figure S4. Plot of rate constant (k_{app}) versus amount of Ag₈₀Ni₂₀@CeO₂ catalyst at 25 °C, [4-NP] = 0.1 mM, and [NaBH₄] = 0.05 M.

Figure S5. XRD patterns of fresh and used $Ag_{80}Ni_{20}$ @CeO₂ catalyst after five runs (A), and SEM images of fresh (B), and used (C) $Ag_{80}Ni_{20}$ @CeO₂ nanocomposite after five catalytic runs.

Figure S6. The scheme of transforming RhB to LRhB by as-prepared nanocomposites in the presence of NaBH₄ solution.

Table S1. Thermodynamic parameters of 4-NP reduction catalyzed by $Ag_{80}Ni_{20}@CeO_2$ nanocomposite at different temperatures.

Catalyst	Т	$k_{app} \times 10^{-3}$	$TOF \times 10^{19}$	E_a	A×10 ⁶	ΔH	ΔS	ΔG
	(°C)	(s^{-1})	(molecule g ⁻¹ min ⁻¹)	$(kJ mol^{-1})$		$(kJ mol^{-1})$	$(J \ mol^{-1} \ K^{-1})$	(kJ mol ⁻¹)
Ag ₈₀ Ni ₂₀ @CeO ₂	5	27.67	4.817	40.214	1.076	37.742	-137.735	76.032
	15	58.79	10.323					77.409
	25	103.85	18.066					78.787
	35	171.60	28.905					80.164
	45	245.90	42.508					81.541

Table S2. Thermodynamic parameters of 4-NP reduction catalyzed by $Co_{60}Ni_{40}@CeO_2$ nanocomposite at different temperatures.

T ka	$_{upp} \times 10^{-3}$	$TOF \times 10^{19}$	E_a	$A \times 10^{6}$	ΔH	ΔS	ΔG
°C)	(s^{-1}) (1	molecule g ⁻¹ min ⁻¹)	(kJ mol ⁻¹)		(kJ mol ⁻¹)	(J mol ⁻¹ K ⁻¹)	(kJ mol ⁻¹)
5 1	9.52	3.613	45.170	6.4509	42.699	-122.848	76.851
5 4	5.47	8.029					78.079
.5 8	3.89	14.453					79.307
5 13	37.93	24.088					80.536
5 23	39.02	42.508					81.764
	$ \begin{array}{c} $	$ \begin{array}{cccc} $	$k_{app} \times 10^{-3}$ TOF $\times 10^{19}$ C) (s ⁻¹) (molecule g ⁻¹ min ⁻¹) 19.52 3.613 5 45.47 8.029 5 83.89 14.453 5 137.93 24.088 5 239.02 42.508	$k_{app} \times 10^{-3}$ TOF $\times 10^{19}$ E_a C) (s ⁻¹) (molecule g ⁻¹ min ⁻¹) (kJ mol ⁻¹) 19.52 3.613 5 45.47 8.029 5 83.89 14.453 45.170 5 137.93 24.088 5 239.02 42.508	$k_{app} \times 10^{-3}$ TOF $\times 10^{19}$ E_a A×10 ⁶ C) (s ⁻¹) (molecule g ⁻¹ min ⁻¹) (kJ mol ⁻¹) 19.52 3.613 5 45.47 8.029 5 83.89 14.453 45.170 6.4509 5 137.93 24.088 5 239.02 42.508	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Figure S7. Plots of ln (*k*), and ln (*k*/T) versus 1/T, for the 4-NP reduction by NaBH₄ in the presence of Ag₈₀Ni₂₀@CeO₂ (A, and B), and Co₆₀Ni₄₀@CeO₂ (C, and D) nanocomposites.