Electronic Supplementary Material (ESI) for New Journal of Chemistry.

This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Electronic Supplementary Material (ESI) for New Journal of Chemistry.

Monolithic carbon foam-supported Au nanoparticles with excellent catalytic performance in a fixed-bed system

Xiang Liu a, b, Yan Li c, Zheng Xing a, Xiaohua Zhao d, *, Ningning Liu a, Fangyuan Chen a

- ^a Zhenjiang Key Laboratory of Functional Chemistry & Institute of Medicine & Chemical Engineering, Zhenjiang College, Zhenjiang 212028, China.
- ^b Biofuels Institute of Jiangsu University, Zhenjiang 212013, China.
- ^c School of Pharmacy, Taizhou Polytechnic College, Taizhou 225300, China
- ^d School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China.

*Corresponding author: zhao12 19@163.com

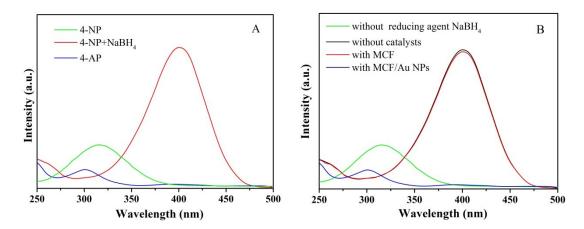


Fig. S1 (A) UV-Vis spectra of 4-NP (green line) and after (red line) adding $NaBH_4$ solution and 4-AP (blue line) solution; (B) UV-Vis spectra of 4-NP (green line) without $NaBH_4$ in the presence of MCF/Au NPs as catalyst, 4-NP (black line) with $NaBH_4$ in the absence of MCF/Au NPs as catalyst, 4-NP (red line) with $NaBH_4$ in the presence of MCF as catalyst and 4-NP (blue line) with $NaBH_4$ in the presence of MCF/Au NPs as catalyst.

Table S1 The reaction rate at different flow rates						
Au content (wt. %)	Flow rates (mL/min)	tes (mL/min) Conversion %				
0.32	2	98.9	0.122			
0.32	4	69.3	0.171			
0.32	6	40.1	0.256			
0.32	8	6.3	0.031			

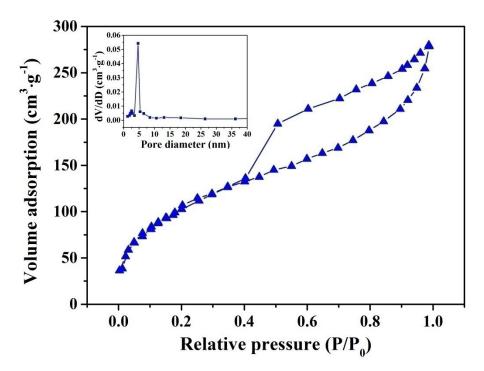


Fig. S2 Nitrogen adsorption-desorption isotherms and the corresponding BJH pore size distributions of MCF/AuNPs composites.

Table S2. Comparison of the catalytic performance in the reduction of 4-NP as reported in the literature

Catalysts	C _{NaHB4} (M)	C _{4-NP} (mM)	K _{app} (min ⁻¹)	Ref.
MCF/Au nanoparticles	0.3	0.5	0.12	This work
Au nanoparticles/GO	0.16	7	0.18	1
Au/graphene	0.1	0.1	0.19	2
Au nanowires /glass fibers	0.25	2.5	0.39	3
CNDs/Au NPs	0.08	3.5	0.0943	4

References

- Y. Zhang, S. Liu, W. Lu, L. Wang, J. Tian and X. Sun, Catal. Sci. Technol., 2011, 1, 1142-1144.
- 2. J. Li, C.-y. Liu and Y. Liu, J. Mater. Chem., 2012, 22, 8426-8430.
- 3. J. He, W. Ji, L. Yao, Y. Wang, B. Khezri, R. D. Webster and H. Chen, *Adv. Mater.*, 2014, **26**, 4151-4155.
- 4. X. Qin, W. Lu, G. Chang, Y. Luo, A. M. Asiri, A. O. Al-Youbi and X. Sun, *Gold Bulletin*, 2012, **45**, 61-67.