Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

SUPPORTING INFORMATION

Photophysical Study on Unsymmetrical Binuclear Cycloplatinated(II) Complexes

Mozhgan Samandar Sangari,^a Mohsen Golbon Haghighi,^{*b} S. Masoud Nabavizadeh,^a Maciej Kubicki,^c and Mehdi Rashidi ^{*a}

^aDepartment of Chemistry, College of Sciences, Shiraz University, Shiraz 71467-13565, Iran, ^bDepartment of Chemistry, Shahid Beheshti University, Evin, Tehran 19839-69411, Iran, ^cFaculty of Chemistry, Adam Mickiewicz University, Umultowska 89b, 61–614 Poznan, Poland

E-mails: m_golbon@sbu.ac.ir (M.G.H.)

1. DFT and TDDFT calculations

1.1. Complex 4

Table S1. Fragment contributions (%; from atomic orbital contributions) to the frontier orbitals of $[(p-MeC_6H_4)(bhq)Pt(\mu-dppm)Pt(bhq)(p-MeC_6H_4)]$, **4** in CH₂Cl₂ solution.

Energies(eV)	Number	Pt ₁	Pt ₂	dppm	Bhq_1	Bhq ₂	P-tol ₁	P-tol ₂
- 0.676	LUMO+6	6	1	82	5	2	1	3
- 0.901	LUMO+5	2	6	82	0	8	0	2
- 1.094	LUMO+4	3	0	92	3	1	1	0
-1.166	LUMO+3	3	0	7	87	2	1	0
- 1.182	LUMO+2	0	3	13	2	81	0	1
- 1.706	LUMO+1	3	0	2	92	2	1	0
-1.716	LUMO	0	3	3	3	90	0	1
-5.581	НОМО	3	21	7	1	8	9	51
-5.626	HOMO-1	22	7	5	12	8	39	7
-5.644	HOMO-2	5	23	6	4	52	9	1
-5.649	HOMO-3	25	2	4	58	6	4	1
-5.871	HOMO-4	0	82	4	0	6	0	8
-5.911	HOMO-5	82	0	3	6	0	9	0
-6.223	HOMO-6	0	43	1	0	44	0	12
-6.231	HOMO-7	44	0	1	49	0	6	0
-6.383	HOMO-8	0	15	8	0	5	0	72
-6.442	HOMO-9	18	0	5	4	0	0	73
-6.524	HOMO-10	10	26	18	18	21	4	3
-6.552	HOMO-11	25	25	4	21	16	6	3
-6.607	HOMO-12	19	7	41	18	12	2	1
-6.850	HOMO-15	32	9	20	30	9	0	0

LUMO+5

LUMO

LUMO+1

Figure S1. Qualitative frontier molecular orbitals for complex 4.

Energies(eV)	Number	Pt ₁	Pt ₂	dppm	Bhq_1	Bhq ₂	P-tol ₁	P-tol ₂
-0.472	LUMO+6	6	1	83	5	2	1	2
-0.801	LUMO+5	1	2	83	1	11	1	1
-0.898	LUMO+4	2	0	93	2	2	1	0
-0.976	LUMO+3	0	2	20	0	77	0	1
-1.001	LUMO+2	5	0	9	84	0	2	0
-1.574	LUMO+1	0	3	4	0	92	0	1
-1.791	LUMO	1	0	1	97	0	1	0
-5.174	HOMO	20	0	3	77	0	0	0
-5.273	HOMO-1	0	25	8	0	14	1	52
-5.351	HOMO-2	2	29	3	0	58	4	4
-5.388	HOMO-3	25	2	8	9	2	52	2
-5.541	HOMO-4	0	80	4	0	8	0	8
-5.624	HOMO-5	80	0	3	8	0	9	0
-5.919	HOMO-6	48	0	2	45	0	5	0
-5.969	HOMO-7	0	49	1	0	37	0	13
-6.112	HOMO-8	0	24	6	0	3	0	67
-6.201	HOMO-9	35	0	5	6	0	54	0
-6.249	HOMO-10	1	39	5	2	43	2	8
-6.283	HOMO-11	45	2	3	24	2	24	0

Table S2. Fragment contributions (%; from atomic orbital contributions) to the frontier orbitals of $[(p-MeC_6H_4)(bhq)Pt(\mu-dppm)Pt(bhq)(p-MeC_6H_4)]$, **4** in gas phase.

LUMO+3

LUMO+4

LUMO

LUMO+1

LUMO+2

HOMO-2 HOMO-1 HOMO НОМО-2 НОМО-1 НОМО НОМО-5 НОМО-4 НОМО-3

Figure S2. Qualitative frontier molecular orbitals for complex 4 in gas phase.

Figure S3. Experimental UV-vis spectra in CH_2Cl_2 (10⁻⁵ M) at 298 K and calculated absorption spectra, showing by bars, in CH_2Cl_2 for the complex 4.

state	Monoexcitations ^a	$\Delta E/eV$	λ_{cal}/nm	oscillator strength	main character
S1	H-2→L (64%)	3.253	381	0.042	MLCT/LC/LLCT
	H-1→L (17%)				
S2	H-3→L+1 (61%)	3.259	380	0.042	MLCT/LC/LLCT
	H-1→L+1 (29%)				
S3	H→L (68%)	3.289	377	0.0087	MLCT/LC
	H-4→L (16%)				
S4	H-1→L+1 (35%)	3.335	372	0.0136	MLCT/LC/LLCT
	H-3→L+1 (17%)				
	H-5→L+1 (17%)				
	H-2→L+1 (13%)				
	H→L+1 (13%)				
S6	H-5→L+1 (78%)	3.431	361	0.0105	MLCT
S11	H-6→L (48%)	3.769	329	0.032	MLCT/LC/LLCT
	H-2→L+2 (31%)				
S12	H-7→L+1 (50%)	3.782	328	0.030	MLCT/LC/LLCT
	H-3→L+3 (29%)				
	H-1→L+3 (10%)				
S13	H→L+2 (75%)	3.807	326	0.003	MLCT/LLCT
S17	H-4→L+2 (73%)	3.929	315	0.043	MLCT
S18	H-2→L+2 (17%)	3.942	314	0.135	MLCT/LC/LLCT
	H-6→L (16%)				
	H-4→L+2 (14%)				
	H→L+4 (13%)				

Table S3. Selected vertical singlet excitations of **4** from TDDFT calculations at the ground state geometry in CH_2Cl_2 solution (10⁻⁵).

S19	H→L+4 (39%)	3.955	313	0.083	MLCT/LLCT
	H-1→L+4 (22%)				
S20	H-3→L+3 (28%)	3.967	312	0.184	MLCT/LC/LLCT
	H-7→L+1 (21%)				
	H→L+4 (20%)				
S21	H-5→L+3 (77%)	3.986	311	0.015	MLCT
S26	H→L+5 (65%)	4.092	303	0.0093	MLCT/LLCT
	H-1→L+2 (12%)				
S27	H-10→L (23%)	4.110	302	0.0415	MLCT/LC/LLCT
	H-11→L (19%)				
	H-6→L (14%)				
	H-8→L (13%)				
S28	H-5→L+4 (61%)	4.118	301	0.0375	MLCT
S29	H-5→L+4 (27%)	4.139	299	0.0302	MLCT/LC/LLCT
	H-11→L+1 (15%)				
	H-9→L+1 (13%)				
	H-10→L+1 (10%)				
S34	H-10→L+1 (10%) H-8→L (25%)	4.192	296	0.0255	MLCT/LC/LLCT
S34	H-10 \rightarrow L+1 (10%) H-8 \rightarrow L (25%) H-6 \rightarrow L+2 (18%)	4.192	296	0.0255	MLCT/LC/LLCT
S34	$\begin{array}{c} H-10 \rightarrow L+1 \ (10\%) \\ H-8 \rightarrow L \ (25\%) \\ H-6 \rightarrow L+2 \ (18\%) \\ H-2 \rightarrow L+3 \ (16\%) \end{array}$	4.192	296	0.0255	MLCT/LC/LLCT
S34	$\begin{array}{c} H-10 \rightarrow L+1 \ (10\%) \\ H-8 \rightarrow L \ (25\%) \\ H-6 \rightarrow L+2 \ (18\%) \\ H-2 \rightarrow L+3 \ (16\%) \\ H-2 \rightarrow L+5 \ (11\%) \end{array}$	4.192	296	0.0255	MLCT/LC/LLCT
S34 S37	$\begin{array}{c} H-10 \rightarrow L+1 \ (10\%) \\ H-8 \rightarrow L \ (25\%) \\ H-6 \rightarrow L+2 \ (18\%) \\ H-2 \rightarrow L+3 \ (16\%) \\ H-2 \rightarrow L+5 \ (11\%) \\ H-7 \rightarrow L+3 \ (32\%) \end{array}$	4.192	296	0.0255	MLCT/LC/LLCT MLCT/LC/LLCT
S34 S37	$\begin{array}{c} \text{H-10} \rightarrow \text{L+1 (10\%)} \\ \text{H-8} \rightarrow \text{L (25\%)} \\ \text{H-6} \rightarrow \text{L+2 (18\%)} \\ \text{H-2} \rightarrow \text{L+3 (16\%)} \\ \text{H-2} \rightarrow \text{L+5 (11\%)} \\ \text{H-7} \rightarrow \text{L+3 (32\%)} \\ \text{H-9} \rightarrow \text{L+1 (24\%)} \end{array}$	4.192	296 293	0.0255	MLCT/LC/LLCT MLCT/LC/LLCT

Table S4. Lowest-energy vertical triplet excitations of **4** from TDDFT calculations in gas phase.

state	Monoexcitations ^a	$\Delta E/eV$	λ_{cal}/nm	main character
T1	H→L (71%)	1.948	637	MLCT/LC
	H-6→L (12%)			
	H→L+2 (10%)			
T2	H-2→L+1 (35%)	2.611	475	MLCT/LC/LLCT
	H-2→L+3 (19%)			
	H-7→L+1 (16%)			
T3	H→L+2 (51%)	2.741	452	MLCT/LC
	H→L (24%)			
	H-6→L (16%)			
T4	H-2→L+1 (46%)	2.797	443	MLCT/LC/LLCT
	H-2→L+3 (20%)			
T5	H-6→L (51%)	2.873	431	MLCT/LC
	H→L+2 (27%)			

 a H = HOMO; L = LUMO.

1.2. Complex 5a

Energies(eV)	Number	Pt ₁	Pt ₂	dppm	Bhq_1	Bhq ₂	Cl	P-tol
-1.079	LUMO+5	2	2	87	6	2	0	1
-1.153	LUMO+4	2	10	27	53	6	1	1
-1.183	LUMO+3	1	20	51	15	12	1	0
-1.298	LUMO+2	0	4	6	0	89	1	0
-1.704	LUMO+1	3	0	2	94	0	0	1
-1.883	LUMO	0	3	4	0	92	0	0
-5.618	HOMO	27	0	6	15	0	0	51
-5.641	HOMO-1	26	0	5	60	0	0	9
-5.725	HOMO-2	0	34	2	0	54	10	0
-5.900	HOMO-3	83	0	3	6	0	0	8
-6.220	HOMO-4	44	1	2	47	0	0	6
-6.325	HOMO-5	1	70	15	6	7	1	0
-6.432	HOMO-6	5	24	7	3	42	4	15
-6.447	HOMO-7	11	7	4	1	18	2	57
-6.549	HOMO-8	46	2	3	37	2	0	10
-6.590	HOMO-9	0	14	29	0	7	50	0
-6.658	HOMO-10	15	8	34	27	12	2	2
-6.772	HOMO-11	2	22	7	4	34	31	0
-6.845	HOMO-13	46	1	8	42	1	1	1
-7.169	HOMO-18	2	41	44	1	10	2	0

Table S5. Fragment contributions (%; from atomic orbital contributions) to the frontier orbitals of $[(p-MeC_6H_4)(bhq)Pt(\mu-dppm)Pt(bhq)(Cl)]$, **5a** in CH₂Cl₂ solution.

LUMO+3

LUMO

LUMO+1

LUMO+2

Figure S4. Qualitative frontier molecular orbitals for complex 5a.

Energies(eV)	number	Pt ₁	Pt ₂	dppm	Bhq_1	Bhq ₂	Cl	P-tol
-0.842	LUMO+5	2	5	86	2	3	1	1
-0.894	LUMO+4	0	17	71	0	10	2	0
-0.947	LUMO+3	5	0	8	85	0	0	2
-1.159	LUMO+2	0	3	4	0	92	1	0
-1.742	LUMO+1	1	0	1	96	1	0	1
-1.777	LUMO	0	2	4	1	93	0	0
-5.125	HOMO	20	0	3	77	0	0	0
-5.324	HOMO-1	27	0	8	9	0	0	56
-5.460	HOMO-2	0	38	2	0	42	20	0
-5.568	HOMO-3	80	0	3	8	0	0	9
-5.869	HOMO-4	48	0	2	44	0	0	6
-6.079	HOMO-5	2	69	16	4	7	2	0
-6.116	HOMO-6	1	18	14	0	8	58	1
-6.140	HOMO-7	28	2	4	4	1	2	59
-6.228	HOMO-8	42	7	4	22	4	2	19
-6.249	HOMO-9	12	21	10	6	36	13	2
-6.430	HOMO-10	4	5	13	10	51	17	0
-6.460	HOMO-11	9	9	33	15	18	15	1

Table S6. Fragment contributions (%; from atomic orbital contributions) to the frontier orbitals of $[(p-MeC_6H_4)(bhq)Pt(\mu-dppm)Pt(bhq)(Cl)]$, **5a** in gas phase.

LUMO+4

LUMO+1

LUMO+2

HOMO-2

HOMO-1

НОМО

Figure S5. Qualitative frontier molecular orbitals for complex 5a in gas phase.

Figure S6. Experimental UV-vis spectra in CH_2Cl_2 (10⁻⁵ M) at 298 K and calculated absorption spectra, showing by bars, in CH_2Cl_2 for the complex **5a**.

state	Monoexcitations ^a	$\Delta E/eV$	λ_{cal}/nm	oscillator strength	main character
S1	H-2→L (95%)	3.165	392	0.058	MLCT/LC/LLCT
S2	H-1→L+1 (62%)	3.254	381	0.043	MLCT/LC/LLCT
	H→L+1 (32%)				
S3	H→L+1 (49%)	3.332	372	0.011	MLCT/LC/LLCT
	H-1→L+1 (26%)				
	H-3→L+1 (22%)				
S4	H→L (92%)	3.413	363	0.0011	MLCT/LLCT
S5	H-3→L+1 (74%)	3.426	362	0.0079	MLCT/LC/LLCT
	H→L+1 (15%)				
S7	H-2→L+3 (46%)	3.610	343	0.0016	MLCT/LC/LLCT
	H-2→L+4 (17%)				
	H-2→L+6 (10%)				
S 8	H-5→L (73%)	3.651	340	0.0112	MLCT/LLCT
S11	H-2→L+2 (59%)	3.771	329	0.029	MLCT/LC/LLCT
	H-6→L (21%)				
S12	H-4→L+1 (52%)	3.777	328	0.034	MLCT/LC/LLCT
	H-1→L+4 (20%)				
S14	H-5→L+3 (35%)	3.909	317	0.0133	MLCT/LC/LLCT
	H-5→L+4 (13%)				
	H-5→L+6 (11%)				
S15	H→L+5 (21%)	3.951	314	0.159	MLCT/LC/LLCT
	H-1→L+4 (18%)				

Table S7. Selected vertical singlet excitations of **5a** from TDDFT calculations at the ground state geometry in CH_2Cl_2 solution (10⁻⁵).

	H-4→L+1 (15%)				
	H-8→L+1 (10%)				
S17	H→L+5 (38%)	3.968	312	0.074	MLCT/LLCT
S18	H-6→L (35%)	3.977	311	0.108	MLCT/LC/LLCT
	H-2→L+2 (23%)				
	H-7→L (10%)				
S26	H-3→L+5 (60%)	4.111	301	0.0324	MLCT
S27	H-8→L+1 (23%)	4.130	300	0.0342	MLCT/LC/LLCT
	H-5→L+1 (15%)				
	H-3→L+5 (15%)				
	H-1→L+3 (10%)				
S30	H-11→L (42%)	4.170	297	0.0922	MLCT/LC/LLCT
	H-6→L+2 (12%)				
	H-10→L (12%)				
S31	H-4→L+4 (25%)	4.224	293	0.054	MLCT/LC/LLCT
	H-13→L+1(20%)				
	H-7→L+1 (19%)				
	H-4→L+3 (11%)				

 a H = HOMO; L = LUMO.

Table S8. Lowest-energy vertical triplet excitations of **5a** from TDDFT calculations in gas phase.

state	Monoexcitations ^a	Δ E/eV	λ_{cal}/nm	main character
T1	H→L+1 (70%)	1.947	637	MLCT/LC
	H-4→L+1 (11%)			
	H→L+3 (10%)			
T2	H-2→L (37%)	2.641	469	MLCT/LC/LLCT
	H-2→L+2 (22%)			
	H-9→L (14%)			
T3	H-2→L (54%)	2.742	452	MLCT/LC/LLCT
	H-2→L+2 (24%)			
T4	H→L+3 (49%)	2.743	452	MLCT/LC
	H→L+1 (24%)			
	H-4→L+1 (16%)			
T5	H-4→L+1 (49%)	2.873	431	MLCT/LC
	H→L+3 (28%)			
T6	H-3→L+1 (49%)	2.981	416	MLCT/LC/LLCT
	H-1→L+1 (45%)			

 $^{a}H = HOMO; L = LUMO.$

1.3. Complex 5b

Energies(eV)	number	Pt ₁	Pt ₂	dppm	Bhq_1	Bhq ₂	CF ₃ CO ₂	P-tol
-0.708	LUMO+6	0	3	5	0	92	0	0
-1.075	LUMO+5	2	0	86	9	1	0	1
-1.186	LUMO+4	3	5	32	52	6	1	1
-1.198	LUMO+3	1	20	54	11	12	2	0
-1.350	LUMO+2	0	4	9	0	86	1	0
-1.698	LUMO+1	3	0	2	94	0	0	1
-1.946	LUMO	0	3	5	0	92	0	0
-5.618	HOMO	30	0	4	52	0	0	14
-5.676	HOMO-1	25	0	6	22	0	0	46
-5.835	HOMO-2	0	31	2	0	65	2	0
-5.922	HOMO-3	82	0	2	8	0	0	8
-6.243	HOMO-4	41	0	1	51	0	0	7
-6.322	HOMO-5	1	74	13	2	4	5	0
-6.464	HOMO-6	8	15	12	7	45	1	12
-6.494	HOMO-7	16	4	5	2	18	0	55
-6.564	HOMO-8	48	0	3	34	1	0	14
-6.697	HOMO-9	15	5	36	30	11	1	2
-6.807	HOMO-10	1	3	93	1	1	1	0
-6.855	HOMO-11	49	0	6	43	0	0	2
-6.918	HOMO-12	0	0	98	0	1	1	0
-7.007	HOMO-13	1	36	9	1	45	7	0
-7.088	HOMO-14	1	9	83	1	3	3	0
-7.107	HOMO-15	1	5	87	1	3	3	0
-7.149	HOMO-16	2	30	50	1	9	7	1
-7.175	HOMO-17	2	8	76	2	2	9	1
-7.222	HOMO-18	2	48	37	1	7	5	0
-7.241	HOMO-19	1	37	25	1	7	29	0

Table S9. Fragment contributions (%; from atomic orbital contributions) to the frontier orbitals of $[(p-Me-C_6H_4)(bhq)Pt(\mu-dppm)Pt(bhq)(CF_3CO_2)]$, **5b** in CH₂Cl₂ solution.

LUMO

LUMO+1

Figure S7. Qualitative frontier molecular orbitals for complex 5b.

Energies(eV)	number	Pt ₁	Pt ₂	dppm	Bhq_1	Bhq ₂	CF ₃ CO ₂	P-tol
-0.936	LUMO+5	3	0	88	7	1	0	1
-0.981	LUMO+4	0	23	63	0	12	2	0
-1.026	LUMO+3	5	0	18	75	0	0	2
-1.297	LUMO+2	0	3	4	0	92	1	0
-1.801	LUMO+1	2	0	1	96	0	0	1
-1.924	LUMO	0	3	4	0	93	0	0
-5.192	HOMO	20	0	3	77	0	0	0
-5.409	HOMO-1	27	1	7	9	0	0	56
-5.646	HOMO-2	79	0	3	9	0	0	9
-5.732	HOMO-3	0	34	2	0	62	2	0
-5.947	HOMO-4	46	0	2	47	0	0	6
-6.127	HOMO-5	1	68	12	2	4	13	0
-6.226	HOMO-6	34	1	5	5	0	0	55
-6.305	HOMO-7	50	0	3	24	0	0	23
-6.382	HOMO-8	7	16	20	11	42	3	1
-6.554	HOMO-9	12	3	30	27	24	3	1
-6.600	HOMO-10	1	4	89	3	2	1	0

Table S10. Fragment contributions (%; from atomic orbital contributions) to the frontier orbitals of $[(p-Me-C_6H_4)(bhq)Pt(\mu-dppm)Pt(bhq)(CF_3CO_2)]$, **5b** in gas phase.

Figure S8. Qualitative frontier molecular orbitals for complex 5b in gas phase.

HOMO-5

HOMO-4

HOMO-3

Figure S9. Experimental UV-vis spectra in CH_2Cl_2 (10⁻⁵ M) at 298 K and calculated absorption spectra, showing by bars, in CH_2Cl_2 for the complex **5b**.

state	Monoexcitations ^a	$\Delta E/eV$	λ_{cal}/nm	oscillator strength	main character
S1	H-2→L (95%)	3.213	386	0.063	MLCT/LC
S2	H→L+1 (89%)	3.271	379	0.044	MLCT/LC/LLCT
S3	H-1→L+1 (60%)	3.382	367	0.0113	MLCT/LC/LLCT
	H-3→L+1 (33%)				
S4	H→L (67%)	3.407	364	0.0013	MLCT/LLCT
	H-1→L (33%)				
S6	H-3→L+1 (64%)	3.459	358	0.023	MLCT
	H-1→L+1 (32%)				
S7	$H-5 \rightarrow L (93\%)$	3.578	346	0.0113	MLCT/LLCT
S9	H-2→L+2 (41%)	3.774	328	0.0121	MLCT/LC/LLCT
	H-6→L (19%)				
	H-2→L+3 (15%)				
S10	H-4→L+1 (44%)	3.789	327	0.032	MLCT/LC/LLCT
	H→L+4 (33%)				
	H→L+3 (11%)				
S11	H-2→L+3 (40%)	3.808	326	0.0047	MLCT/LC/LLCT
	H-6→L (16%),				
	H-2→L+4 (12%)				
S14	H-1→L+2 (19%)	3.947	314	0.0256	MLCT/LC/LLCT
	H-5→L+3 (16%)				
	H→L+2 (16%)				
	H-1→L+3 (15%)				
S15	H-4→L+1 (30%)	3.968	312	0.1847	MLCT/LC/LLCT
	H→L+4 (19%)				
	H→L+3 (13%)				

Table S11. Selected vertical singlet excitations of **5b** from TDDFT calculations at the ground state geometry in CH_2Cl_2 solution (10⁻⁵).

	H-8→L+1 (10%)				
S16	H-3→L+4 (32%)	3.976	311	0.025	MLCT/LC/LLCT
	H-5→L+3 (13%)				
	H-3→L+3 (10%)				
	H-1→L+2 (10%)				
	H→L+2 (10%)				
S17	H-3→L+4 (26%)	3.979	311	0.184	MLCT/LC/LLCT
	H-5→L+3 (14%)				
	H→L+2 (13%)				
S21	H-2→L+2 (40%)	4.025	308	0.155	MLCT/LC/LLCT
	H-6→L (30%)				
S23	H-1→L+5 (51%)	4.062	305	0.014	MLCT/LLCT
	H→L+5 (25%)				
S24	H-3→L+5 (44%)	4.127	300	0.047	MLCT/LC/LLCT
	H-8→L+1 (18%)				
S26	H-3→L+5 (34%)	4.157	298	0.012	MLCT/LC/LLCT
	H-5→L+1 (12%)				
	H-8→L+1 (12%)				
	H-6→L+1 (10%)				
S27	H-5→L+1 (37%)		296	0.026	MLCT/LC/LLCT
	H-9→L+1 (23%)	4.187			
	H-8→L+1 (10%)				
S32	H-13→L (24%)	4.247	292	0.024	MLCT/LC/LLCT
	H-6→L+2 (21%)				
S33	H-4→L+4 (24%)	4.249	291	0.0524	MLCT/LC/LLCT
	H-11→L+1 (22%)				
	H-7→L+1 (16%)				

Table S12. Lowest-energy vertical triplet excitations of **5b** from TDDFT calculations in gas phase.

state	Monoexcitations ^a	Δ E/eV	λ_{cal}/nm	main character
T1	H→L+1 (71%)	1.950	636	MLCT/LC
	H-4→L+1 (11%)			
T2	H-3→L+2 (32%)	2.655	467	MLCT/LC/LLCT
	H-3→L (24%)			
	H-8→L (18%)			
T3	H→L+3 (48%)	2.744	452	MLCT/LC/LLCT
	H→L+1 (24%)			
	H-4→L+1 (14%)			
T4	H-3→L (69%)	2.792	444	MLCT/LC
	H-3→L+2 (17%)			
T5	H-4→L+1 (46%)	2.870	432	MLCT/LC/LLCT
	H→L+3 (25%)			
	H-1→L+1 (11%)			

1.4. Complex 5c

Energies(eV)	number	Pt ₁	Pt ₂	dppm	рру	Bhq	CF ₃ CO ₂	P-tol
-1.082	LUMO+5	2	1	74	20	2	0	1
-1.118	LUMO+4	1	3	39	54	2	1	0
-1.170	LUMO+3	3	0	9	2	85	0	1
-1.189	LUMO+2	0	21	59	16	2	2	0
-1.707	LUMO+1	3	0	2	0	94	0	1
-1.811	LUMO	0	5	7	88	0	0	0
-5.640	HOMO	29	0	5	0	29	0	36
-5.657	HOMO-1	25	0	6	0	44	0	25
-5.913	HOMO-2	83	0	3	0	6	0	8
-5.966	HOMO-3	0	44	1	53	0	2	0
-6.237	HOMO-4	43	0	1	0	50	0	6
-6.300	HOMO-5	0	76	12	4	3	5	0
-6.464	HOMO-6	8	15	12	7	45	1	12
-6.513	HOMO-7	2	9	14	62	7	0	6
-6.563	HOMO-8	45	1	2	7	33	0	12
-6.677	HOMO-9	16	9	35	9	28	1	2
-6.804	HOMO-10	0	4	92	2	1	1	0
-6.856	HOMO-11	49	0	5	0	44	0	2
-6.922	HOMO-12	1	1	95	1	1	1	0
-7.072	HOMO-13	3	50	30	10	3	2	2
-7.189	HOMO-17	0	37	38	6	0	19	0
-7.227	HOMO-18	1	31	37	7	1	22	1

Table S13. Fragment contributions (%; from atomic orbital contributions) to the frontier orbitals of $[(p-Me-C_6H_4)(bhq)Pt(\mu-dppm)Pt(ppy)(CF_3CO_2)]$, **5c** in CH₂Cl₂ solution.

LUMO

HOMO-2

HOMO-1

Figure S10. Qualitative frontier molecular orbitals for complex 5c.

Energies(eV)	number	Pt ₁	Pt ₂	dppm	рру	Bhq	CF ₃ CO ₂	2 P-tol
-0.531	LUMO+6	3	2	88	2	4	0	1
-0.929	LUMO+5	2	3	80	5	9	0	1
-0.953	LUMO+4	1	13	43	17	25	1	0
-0.976	LUMO+3	2	8	50	3	35	1	1
-1.019	LUMO+2	0	5	20	73	1	1	0
-1.552	LUMO+1	3	0	2	0	94	0	1
-2.058	LUMO	0	6	5	89	0	0	0
-5.379	HOMO	28	0	4	0	68	0	0
-5.425	HOMO-1	26	1	7	0	8	0	58
-5.635	HOMO-2	0	33	1	64	0	2	0
-5.658	HOMO-3	80	0	3	0	9	0	8
-6.005	HOMO-4	41	0	1	0	52	0	6
-6.164	HOMO-5	1	67	12	4	2	14	0
-6.239	HOMO-6	23	0	4	0	3	0	70
-6.320	HOMO-7	48	1	2	0	34	0	15
-6.414	HOMO-8	7	17	21	40	12	2	1
-6.510	HOMO-9	12	10	27	18	26	6	1
-6.603	HOMO-10	0	4	92	2	1	1	0
-6.649	HOMO-11	50	0	5	0	42	1	2

Table S14. Fragment contributions (%; from atomic orbital contributions) to the frontier orbitals of $[(p-Me-C_6H_4)(bhq)Pt(\mu-dppm)Pt(ppy)(CF_3CO_2)]$, **5c** in gas phase.

LUMO+5

LUMO

LUMO+2

Figure S11. Qualitative frontier molecular orbitals for complex 5c in gas phase.

Figure S12. Experimental UV-vis spectra in CH_2Cl_2 (10⁻⁵ M) at 298 K and calculated absorption spectra, showing by bars, in CH_2Cl_2 for the complex **5c**.

state	Monoexcitations ^a	$\Delta E/eV$	λ_{cal}/nm	oscillator strength	main character
S1	H→L+1 (62%)	3.260	380	0.041	MLCT/LC/LLCT
	H-1→L+1 (33%)				
S2	H-1→L+1 (46%)	3.353	370	0.013	MLCT/LC/LLCT
	H-2→L+1 (27%)				
	H→L+1 (26%)				
S3	H-3→L (96%)	3.393	365	0.057	MLCT/LC
S4	H-2→L+1 (71%)	3.436	361	0.014	MLCT/LC/LLCT
	H-1→L+1 (18%)				
S7	$H-5 \rightarrow L (93\%)$	3.634	341	0.016	MLCT/LLCT
S9	H-4→L+1 (50%)	3.784	328	0.029	MLCT/LC/LLCT
	H→L+3 (24%)				
	H-1→L+3 (16%)				
S13	H-4→L+1 (19%)	3.965	313	0.186	MLCT/LC/LLCT
	H-1→L+3 (15%)				
	H→L+3 (15%)				
	H-8→L+1 (11%)				
S14	H→L+2 (24%)	3.976	312	0.043	MLCT/LLCT
	H-5→L+2 (18%)				
S15	H-2→L+3 (79%)	3.985	311	0.0102	MLCT
S16	H→L+5 (34%)	3.987	311	0.0112	MLCT/LLCT
	H→L+4 (14%)				
	H-5→L+2 (14%)				
S19	H-7→L (40%)	4.066	305	0.0597	MLCT/LC/LLCT
	H-3→L+4 (28%)				

Table S15. Selected vertical singlet excitations of **5c** from TDDFT calculations at the ground state geometry in CH_2Cl_2 solution (10⁻⁵).

S20	H-2→L+5 (42%)	4.113	301	0.0324	MLCT
	H-2→L+4 (25%)				
S22	H-1→L+2 (27%)	4.138	300	0.0212	MLCT/LC/LLCT
	H-8→L+1 (14%)				
	H→L+2 (13%)				
	H-6→L+1 (12%)				
S25	H-3→L+4 (32%)	4.213	294	0.0693	MLCT/LC/LLCT
	H-7→L (31%)				
S27	H-4→L+3 (38%)	4.235	293	0.055	MLCT/LC/LLCT
	H-11→L+1 (24%)				
	H-6→L+1 (22%)				

Table S16. Lowest-energy vertical triplet excitations of **5c** from TDDFT calculations in gas phase.

state	Monoexcitations ^a	Δ E/eV	λ_{cal}/nm	main character
T1	H-2→L (89%)	2.091	593	MLCT/LC
T2	H→L+1 (26%)	2.638	470	MLCT/LC/LLCT
	H-4→L+1 (23%)			
	H→L+3 (16%)			
	H→L+4 (12%)			
T3	H→L+1 (67%)	2.817	440	MLCT/LC/LLCT
	H→L+3 (10%)			
T4	H-1→L (71%)	3.021	410	MLCT/LLCT
	H→L (27%)			
T5	H→L (71%)	3.028	409	MLCT/LLCT
	H-1→L (27%)			

1.5. Complex 5d

Energies(eV)	number	Pt ₁	Pt ₂	dppm	рру	Bhq	Cl	P-tol
-0.629	LUMO+7	8	2	79	5	5	0	1
-0.743	LUMO+6	2	12	72	1	9	4	0
-0.896	LUMO+5	1	0	4	94	0	0	1
-1.084	LUMO+4	0	1	90	3	2	0	1
-1.166	LUMO+3	0	25	56	0	16	0	3
-1.300	LUMO+2	0	4	8	0	87	1	0
-1.559	LUMO+1	5	0	4	89	0	0	2
-1.884	LUMO	0	3	4	0	93	0	0
-5.610	HOMO	27	0	7	9	0	0	57
-5.723	HOMO-1	0	34	2	0	53	10	0
-5.786	HOMO-2	42	0	4	52	0	0	1
-5.892	HOMO-3	81	0	3	7	0	0	9
-6.286	HOMO-4	32	13	5	45	2	0	3
-6.314	HOMO-5	3	62	13	13	7	1	1
-6.412	HOMO-6	53	8	4	19	4	0	12
-6.438	HOMO-7	9	23	5	3	53	4	3
-6.451	HOMO-8	12	0	4	10	0	0	74
-6.579	HOMO-9	0	15	28	0	7	50	0
-6.659	HOMO-10	13	8	38	25	13	1	2
-6.773	HOMO-11	1	22	7	3	36	31	0
-6.786	HOMO-12	0	8	83	0	3	6	0

Table S17. Fragment contributions (%; from atomic orbital contributions) to the frontier orbitals of $[(p-Me-C_6H_4)(ppy)Pt(\mu-dppm)Pt(bhq)(Cl)]$, **5d** in CH₂Cl₂ solution.

LUMO+5

LUMO

LUMO+1

LUMO+2

HOMO-2

Figure S13. Qualitative frontier molecular orbitals for complex 5d.

Energies(eV)	number	Pt ₁	Pt ₂	dppm	рру	Bhq	Cl	P-tol
-0.470	LUMO+6	1	14	70	0	11	3	0
-0.710	LUMO+5	1	0	9	88	0	0	1
-0.836	LUMO+4	1	7	79	6	4	1	1
-0.886	LUMO+3	0	14	74	1	9	1	0
-1.231	LUMO+2	0	5	7	0	87	1	0
-1.322	LUMO+1	5	0	4	90	0	0	2
-2.033	LUMO	0	2	3	0	95	0	0
-5.314	HOMO	9	22	3	3	37	10	16
-5.317	HOMO-1	20	9	6	6	15	4	40
-5.427	HOMO-2	42	0	4	52	0	0	2
-5.558	HOMO-3	78	0	3	10	0	0	9
-5.940	HOMO-4	25	0	1	71	0	0	3
-6.018	HOMO-5	1	32	14	3	32	18	0
-6.058	HOMO-6	1	54	12	1	9	23	0
-6.118	HOMO-7	62	7	3	13	1	3	11
-6.130	HOMO-8	8	30	9	2	12	38	1
-6.160	HOMO-9	9	1	5	6	0	2	77
-6.402	HOMO-10	16	8	40	30	4	0	2
-6.505	HOMO-11	0	12	13	0	45	30	0

Table S18. Fragment contributions (%; from atomic orbital contributions) to the frontier orbitals of $[(p-Me-C_6H_4)(ppy)Pt(\mu-dppm)Pt(bhq)(Cl)]$, **5d** in gas phase.

Figure S14. Qualitative frontier molecular orbitals for complex 5d in gas phase.

Figure S15. Experimental UV-vis spectra in CH_2Cl_2 (10⁻⁵ M) at 298 K and calculated absorption spectra, showing by bars, in CH_2Cl_2 for the complex **5d**.

state	Monoexcitations ^a	Δ E/eV	λ_{cal}/nm	oscillator strength	main character
S1	H-1→L (95%)	3.162	392	0.058	MLCT/LC
S2	H→L+1 (81%)	3.394	365	0.002	MLCT/LLCT
	H-3→L+1 (12%)				
S4	H-2→L+1 (68%)	3.447	360	0.024	MLCT/LC
	H-3→L+1 (29%)				
S5	H-3→L+1 (58%)	3.533	351	0.037	MLCT/LC/LLCT
	H-2→L+1 (23%)				
	H→L+1 (16%)				
S6	H-2→L (71%)	3.603	344	0.0027	MLCT/LC/LLCT
	H-5→L (10%)				
	H-1→L+3 (10%)				
S8	H-5→L (59%)	3.640	341	0.0095	MLCT/LC/LLCT
	H-4→L (12%)				
	H-1→L+3 (10%)				
S10	H-1→L+2 (57%)	3.767	329	0.0323	MLCT/LC/LLCT
	H-7→L (24%)				
S12	H-5→L+3 (40%)	3.901	318	0.012	MLCT/LLCT
S13	H→L+2 (59%)	3.946	314	0.0068	MLCT/LLCT
	H→L+4 (30%)				
S15	H-7→L (44%)	4.974	312	0.116	MLCT/LC
	H-1→L+2 (26%)				
S16	H-4→L+1 (40%)	4.004	310	0.081	MLCT/LC/LLCT
	H-6→L+1 (26%)				
	H→L+3 (15%)				
S17	H→L+3 (57%)	4.011	309	0.014	MLCT/LC/LLCT

Table S19. Selected vertical singlet excitations of **5d** from TDDFT calculations at the ground state geometry in CH_2Cl_2 solution (10⁻⁵).

	$H \rightarrow L+2 (13\%)$				
	$H \rightarrow L + 4 (10\%)$				
S18	H-9→L (82%)	4.049	306	0.009	MLCT/LLCT
S20	H-2→L+5 (35%)	4.095	303	0.0456	MLCT/LC/LLCT
	H-4→L+1 (17%)				
	H→L+5 (14%)				
	H-6→L+1 (13%)				
S25	H-11→L (34%)	4.169	297	0.0783	MLCT/LC/LLCT
	H-7→L+2 (12%)				
S26	H-2→L+2 (64%)	4.175	297	0.0117	MLCT/LLCT
	H-2→L+4 (11%)				
S29	H-5→L+2 (58%)	4.251	292	0.0163	MLCT/LLCT
	H-4→L+2 (12%)				
S33	H-3→L+5 (46%)	4.274	290	0.0135	MLCT/LC/LLCT
	H-5→L+1 (20%)				
S37	H-2→L+5 (40%)	4.346	285	0.1785	MLCT/LC/LLCT
	H-6→L+1 (20%)				
	H-4→L+1 (11%)				

Table S20. Lowest-energy vertical triplet excitations of **5d** from TDDFT calculations in gas phase.

state	Monoexcitations ^a	Δ E/eV	λ_{cal}/nm	main character
T1	H→L (44%)	1.968	630	MLCT/LC/LLCT
	H-1→L (18%)			
	H-5→L (16%)			
T2	H→L+2 (25%)	2.638	470	MLCT/LC/LLCT
	H→L (23%)			
	H-5→L (14%)			
	H-1→L (10%)			
	H-1→L+2 (10%)			
T3	H-2→L+1 (63%)	2.753	450	MLCT/LC
	H-4→L+1 (15%)			
T4	H-5→L (31%)	2.846	436	MLCT/LC/LLCT
	H→L+2 (29%)			
	H-1→L+2 (12%)			
T5	H-1→L (70%)	2.975	417	MLCT/LC/LLCT
	H→L (29%)			

Table S21. The experimental and optimized bond lengths (Å) and angles (°) and charges onplatinum centers of complexes **5a-5d**.

	5a(calc.)	5a (exp.)	5b(calc.)	5c(calc.)	5c (exp.)	5d(calc.)
Pt(1)–N(3)	2.223	2.140(4)	2.225	2.224	2.158(5)	2.207
Pt(1)–P(4)	2.433	2.3106(12)	2.439	2.438	2.2938(13)	2.444
Pt(1)–C(5)	2.047	2.036(5)	2.047	2.046	2.040(6)	2.044
Pt(1)–C(6)	2.024	2.001(6)	2.025	2.024	2.009(6)	2.028
Pt(2)–N(7)	2.134	2.094(4)	2.123	2.109	2.085(5)	2.136
Pt(2)–P(8)	2.300	2.2296(13)	2.303	2.312	2.2349(14)	2.303
Pt(2)–C(9)	2.039	2.018(5)	2.027	2.022	2.012(5)	2.040
Pt(2)–X(10)	2.477	2.3829(14)	2.172	2.177	2.152(4)	2.476
C(5)-Pt(1)-C(6)	91.5	89.7(2)	91.4	91.3	89.7(2)	92.3
C(5)-Pt(1)-N(3)	79.5	80.6(2)	79.5	79.5	80.4(2)	79.0
C(5)-Pt(1)-P(4)	177.4	177.17(15)	178.2	178.1	177.76(19)	178.0
P(4)-Pt(1)-C(6)	91.1	91.16(13)	90.1	90.6	92.15(15)	89.5
P(4)-Pt(1)-N(3)	97.9	98.49(12)	99.0	98.6	97.86(14)	99.3
C(6)-Pt(1)-N(3)	171.0	170.31(17)	170.7	170.7	169.8(2)	171.0
C(9)-Pt(2)-X(10)	170.0	167.57(14)	169.3	169.5	171.91(19)	169.9
C(9)-Pt(2)-P(8)	96.0	95.46(14)	96.9	97.4	98.76(17)	96.2
C(9)-Pt(2)-N(7)	80.6	80.88(19)	81.1	80.4	80.9(2)	80.6
P(8)-Pt(2)-X(10)	93.8	95.00(5)	93.6	93.0	89.08(11)	93.8
P(8)-Pt(2)-N(7)	176.6	176.32(13)	176.6	176.4	174.74(13)	176.7
X(10)-Pt(2)-N(7)	89.6	88.69(13)	88.3	89.1	91.14(17)	89.5
Pt(1) charge	-0.167		-0.162	-0.165		-0.153
Pt(2) charge	-0.004		0.094	0.103		0.000

2. Emission Spectra at 77 K

Figure S16. Normalized emission spectra of the binuclear complexes 5a, 5b and 5d in dichloromethane (10^{-5} M) at 77 K.