Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Supporting Information

for

Molecular industry of cage metal complexes for biological applications: pathways of the synthesis, X-ray structure of a series of new N_2 -, S_2 - and O_2 alicyclic iron(II) di- and tetrachloroclathrochelates

Genrikh E. Zelinskii¹, Alexander S. Belov¹, Irina G. Belaya¹, Anna V. Vologzhanina¹, Valentin V. Novikov¹, Oleg A. Varzatskii², Yan Z. Voloshin^{1,3,*}

¹Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences; 119991 Moscow, Russia; e-mail: <u>voloshin@ineos.ac.ru</u>

² Vernadskii Institute of General and Inorganic Chemistry NASU, 03680, Kiev, Ukraine

³ Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 119991, Moscow, Russia

Figure S1. ¹H NMR spectrum for the CD_2Cl_2 solution of the clathrochelate Fe(S_2 -Nx)(Cl_2Gm)₂(Bn-C₄H₉)₂ (1).

Figure S2. ¹³C{¹H} NMR spectrum for the CD_2Cl_2 solution of the clathrochelate $Fe(S_2-Nx)(Cl_2Gm)_2(Bn-C_4H_9)_2(1)$.

Figure S3. ¹H NMR spectrum for the CD₂Cl₂ solution of the clathrochelate Fe(S_2 -Nx)₂(Cl₂Gm)(B*n*-C₄H₉)₂ (**2**).

Figure S4. ¹³C{¹H} NMR spectrum for the CD_2Cl_2 solution of the clathrochelate Fe(S_2 -Nx)₂(Cl_2Gm)(Bn-C₄H₉)₂ (**2**).

Figure S5. ¹H NMR spectrum for the CD₃OD solution of the clathrochelate $Fe(N_2-Nx)(Cl_2Gm)_2(Bn-C_4H_9)_2$ (3).

Figure S6. ¹³C{¹H} NMR spectrum for the CD₃OD solution of the clathrochelate $Fe(N_2-Nx)(Cl_2Gm)_2(Bn-C_4H_9)_2$ (3).

Figure S7. ¹H NMR spectrum for the CD_2Cl_2 solution of the clathrochelate Fe(N_2 -Nx)(S_2 -Nx)(Cl_2Gm)(Bn-C₄H₉)₂ (**4**).

Figure S8. ¹³C{¹H} NMR spectrum for the CD₂Cl₂ solution of the clathrochelate $Fe(N_2-Nx)(S_2-Nx)(Cl_2Gm)(Bn-C_4H_9)_2$ (4).

Figure S9. ¹H NMR spectrum for the CDCl₃ solution of the clathrochelate $Fe(PrchGm)_3(Bn-C_4H_9)_2$ (5).

Figure S10. ¹³C{¹H} NMR spectrum for the CDCl₃ solution of the clathrochelate $Fe(PrchGm)_3(Bn-C_4H_9)_2$ (5).

Figure S11. ¹H NMR spectrum for the CD_2Cl_2 solution of the clathrochelate Fe(Cl_2Gm)₂(PrchGm)(B*n*-C₄H₉)₂ (**6**).

Figure S12. ¹³C{¹H} NMR spectrum for the CD_2Cl_2 solution of the clathrochelate Fe(Cl_2Gm)₂(PrchGm)(B*n*-C₄H₉)₂ (**6**).

Figure S13. ¹H NMR spectrum for the CDCl₃ solution of the clathrochelate $Fe(Cl_2Gm)(PrchGm)_2(Bn-C_4H_9)_2$ (7).

Figure S14. ¹³C{¹H} NMR spectrum for the CDCl₃ solution of the clathrochelate $Fe(Cl_2Gm)(PrchGm)_2(Bn-C_4H_9)_2$ (7).

Figure S15. UV-Vis spectrum for the dichloromethane solution of the clathrochelate $Fe(S_2-Nx)(Cl_2Gm)_2(Bn-C_4H_9)_2$ (1) and its deconvolution on the Gaussian components.

Figure S16. UV-Vis spectrum for the dichloromethane solution of the clathrochelate $Fe(S_2-Nx)_2(Cl_2Gm)(Bn-C_4H_9)_2$ (2) and its deconvolution on the Gaussian components.

Figure S17. UV-Vis spectrum for the dichloromethane solution of the clathrochelate $Fe(N_2-Nx)(Cl_2Gm)_2(Bn-C_4H_9)_2$ (**3**) and its deconvolution on the Gaussian components.

Figure S18. UV-Vis spectrum for the dichloromethane solution of the clathrochelate $Fe(N_2-Nx)(S_2-Nx)(Cl_2Gm)(Bn-C_4H_9)_2$ (4) and its deconvolution on the Gaussian components.

Figure S19. UV-Vis spectrum for the dichloromethane solution of the clathrochelate $Fe(PrchGm)_3(Bn-C_4H_9)_2$ (5) and its deconvolution on the Gaussian components.

Figure S20. UV-Vis spectrum for the dichloromethane solution of the clathrochelate $Fe(Cl_2Gm)_2(PrchGm)(Bn-C_4H_9)_2$ (6) and its deconvolution on the Gaussian components.

Figure S21. UV-Vis spectrum for the dichloromethane solution of the clathrochelate $Fe(Cl_2Gm)(PrchGm)_2(Bn-C_4H_9)_2$ (7) and its deconvolution on the Gaussian components.

	$\operatorname{Fe}(\operatorname{Cl}_2\operatorname{Gm})_2(N_2-\operatorname{Nx})(\operatorname{Bn-C}_4\operatorname{H}_9)_2$	1.5 $Fe(S_2-Nx)_2(Cl_2Gm)(Bn-C_4H_9)_2 \cdot 0.5 Fe(S_2-Nx)_2(Bn-C_4H_9)_2$	Fe(PrchGm) ₃ (Bn-C ₄ H ₉) ₂		
Empirical formula	C16H22B2Cl4FeNsO6	$\frac{0.512(52-1(x)3(Dn-C4119)2}{C_{27}H_{54}B_4Cl_2Fe_2N_{12}O_{12}S_0}$	C22H20B2Fe N6O12		
Fw	642.69	1408.75	768.09		
Т. К	120	120	120		
Crystal system	monoclinic	triclinic	tetragonal		
Space group	$P 2_{l}/c$	$P\overline{1}$	$P 4_1 2_1 2$		
Z	4	2	4		
a, Å	9.453(2)	14.4860(4)	11.0772(2)		
b, Å	12.533(3)	15.3721(3)	11.0772(2)		
c, Å	23.913(5)	15.7873(4)	26.6909(9)		
α, °	90	117.4170(10)	90.00		
β, °	115.700(4)	99.084(2)	90.00		
γ, °	90	107.0350(10)	90.00		
V, Å ³	2552.9(10)	2800.58(12)	3275.09(14)		
d_{calc} (g·cm ⁻³)	1.672	1.671	1.558		
$\mu (\mathrm{mm}^{-1})$	1.060	91.91	5.37		
F(000)	6300	1446	1584		
$2\theta_{\max}$, °	58	135	52		
Measured refl.	29746	35554	29809		
Independent reflections (R _{int})	7798 (0.080)	9471 (0.045)	4981 (0.037)		
Obs.refl./restraints/ parameters	5315 / 24 / 353	7854 / 14 / 720	4529 / 0 / 241		
$R,^{a}\%$ [I > 2 σ (I)]	0.114	0.0506	0.0300		
R_{w} , b %	0.255	0.1043	0.0772		
GOF ^c	1.06	0.99	1.01		
Residual electron density, eÅ ⁻³ (d _{min} /d _{max})	1.013 / -1.056	1.005/-0.932	0.430/-0.437		

Table S1. Crystallographic data and refinement parameters for the crystals $Fe(Cl_2Gm)_2(N_2-Nx)(Bn-C_4H_9)_2$, 1.5 $Fe(S_2-Nx)_2(Cl_2Gm)(Bn-C_4H_9)_2 \cdot 0.5 Fe(S_2-Nx)_3(Bn-C_4H_9)_2$ and $Fe(PrchGm)_3(Bn-C_4H_9)_2$

 ${}^{a}R = \Sigma \mid |F_{o}| - |F_{c}|| / \Sigma \mid F_{o}| \cdot {}^{b}R_{w} = [\Sigma(w(F_{o}^{2} - F_{c}^{2})^{2}) / \Sigma(w(F_{o}^{2}))]^{1/2} \cdot {}^{c}GOF = [\Sigma w(F_{o}^{2} - F_{c}^{2})^{2} / (N_{obs} - N_{param})]^{1/2}$

Compound	λ_1	λ_2	λ_3	λ_4	λ_5	λ_6	λ_7	λ_8	λ9	λ_{10}	λ_{11}
$Fe(S_2-Nx)(Cl_2Gm)_2(Bn-C_4H_9)_2$	256(5.5)	288(3.0)	294(5.8)	355(1.6)			452(10)	457(6.9)			
$Fe(S_2-Nx)_2(Cl_2Gm)(Bn-C_4H_9)_2$	256(13)		293(11)	350(3.6)			467(7.5)	470(18)			
$Fe(N_2-Nx)(Cl_2Gm)_2(Bn-C_4H_9)_2$	256(2.7)		277(10)	360(6.7)			487(10)				597(0.7)
$Fe(N_2-Nx)(S_2-Nx)(Cl_2Gm)(Bn-C_4H_9)_2$	236(13)	289(4.2)		378(3.6)	411(0.3)	426(1.9)	447(2.4)	484(4.2)	521(3.8)	535(1.0)	577(0.4)
Fe(PrchGm) ₃ (Bn-C ₄ H ₉) ₂	268(7.2)	282(12)	294(1.1)			429(4.4)	432(3.5)	464(6.0)	466(6.9)		
Fe(Cl ₂ Gm) ₂ (PrchGm)(B <i>n</i> -C ₄ H ₉) ₂	239(13)	273(13)	283(1.0)	343(1.5)		422(0.9)	436(5.4)	450(9.8)			
Fe(Cl ₂ Gm)(PrchGm) ₂ (Bn-C ₄ H ₉) ₂	253(5.4)	273(13)	302(3.7)			423(3.3)	447(9.6)	461(6.5)			
Fe(Cl ₂ Gm) ₃ (B <i>n</i> -C ₄ H ₉) ₂ ¹⁷		259(7.9)	285(5.4)	313(2.7)			423(4.8)	453 (15)			

Table S2. UV-vis spectra (λ_{max}/nm , $\epsilon \cdot 10^{-3} \text{ mol}^{-1}\text{Lcm}^3$) for the triribed-functionalized iron(II) clathrochelates