Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

ELECTRONIC SUPPLEMENTARY INFORMATION

Investigation of cobalt(III)-tpa complexes as potential bioreductively activated carriers for naphthoquinone-based drugs

Aline Farias Moreira da Silva^a, Renata de Uzeda Vital^a, Daniela de Luna Martins^a, David Rodrigues da Rocha^a, Glaucio Braga Ferreira^a, Jackson Antônio Lamounier Camargos Resende^b, Mauricio Lanznaster^{*a}

^a Instituto de Química, Universidade Federal Fluminense, Outeiro S. João Batista S/N, 24020-141, Niterói, RJ, Brazil

^b Instituto de Ciências Exatas e da Terra, Centro Universitário do Araguaia, Universidade Federal do Mato Grosso, 78600-000, Barra do Garças, MT, Brazil.

Distance/angle	$[Co(TPA)(NQ-CH_3)]^{2+}$		$[Co(TPA)(NQ^1-Cl)]^+$	
	Exp.	Calc.	Exp.	Calc.
Co-O1	1.923	1.921	1.882	1.877
Co-O2	1.888	1.875	1.884	1.863
Co-N1	1.935	1.962	1.944	1.966
Co-N2	1.915	1.918	1.916	1.910
Co-N3	1.922	1.918	1.934	1.921
Co-N4	1.886	1.895	1.920	1.922
O2-Co-O1	84.92	86.02	87.22	89.05
N4-Co-N1	87.68	87.50	86.67	87.13
N4-Co-N3	88.82	90.48	90.29	90.35
N4-Co-N2	92.52	90.48	91.76	90.50
N1-Co-N2	85.36	85.64	85.76	86.16
N1-Co-N3	85.13	85.64	84.91	85.69
01-Co-N1	92.68	92.69	93.12	90.97
O2-Co-N4	94.70	93.79	92.95	92.83
01-Co-N3	89.44	89.53	87.67	88.60
O1-Co-N2	89.28	89.53	90.25	90.28

Table S1. Comparison between calculated and experimental bond distances (Å) and angles (°) of $[Co(TPA)(NQ-CH_3)]^{2+}$ and $[Co(TPA)(NQ^1-Cl)]^+$.

Figure S1. FTIR spectrum (ATR) of 1.

Figure S2. FTIR spectrum (ATR) of 2.

Figure S3. FTIR spectrum (ATR) of **3**.

Figure S4. FTIR spectrum (ATR) of 4.

Figure S5. ESI-MS spectrum of 1 in MeCN.

Figure S6. ESI-MS spectrum of 2 in MeCN.

Figure S7. ESI-MS spectrum of **3** in MeCN.

Figure S8. ESI-MS spectrum of 4 in MeCN.

Figure S9. UV-Visible spectrum of 1 in DMSO ($2.0 \times 10^{-4} \text{ mol.L}^{-1}$).

Figure S10. UV-Visible spectrum of $\mathbf{2}$ in DMSO (2.0 x 10⁻⁴ mol.L⁻¹).

Figure S11. UV-Visible spectrum of **3** in DMSO ($2.0 \times 10^{-4} \text{ mol.L}^{-1}$).

Figure S12. UV-Visible spectrum of **4** in DMSO ($2.0 \times 10^{-4} \text{ mol.L}^{-1}$).

Figure S13. UV-Visible spectrum of HNQ-CH₃ in DMSO (2.0 x 10⁻⁴ mol.L⁻¹).

Figure S14. UV-Visible spectrum of HNQ-Cl in DMSO (2.0 x 10⁻⁴ mol.L⁻¹).

Figure S15. UV-Visible spectrum of HNQ-Br in DMSO (2.0 x 10⁻⁴ mol.L⁻¹).

Figure S16. UV-Visible spectrum of HNQ-I in DMSO ($2.0 \times 10^{-4} \text{ mol.L}^{-1}$).

Figure S17. Cyclic voltammogram of **1** in MeCN (1 x 10⁻⁴ mol.L⁻¹) with TBAClO₄ 0.1 M, at 0.1 V/s, using a three electrode arrange (work.: carbon; ref.: Ag/AgCl (org.); aux.: Pt wire). Fc/Fc⁺ was used as an internal reference.

Figure S18. Cyclic voltammogram of **2** in MeCN (1 x 10⁻⁴ mol.L⁻¹) with TBAClO₄ 0.1 M, at 0.1 V/s, using a three electrode arrange (work.: carbon; ref.: Ag/AgCl (org.); aux.: Pt wire). Fc/Fc⁺ was used as an internal reference.

Figure S19. Cyclic voltammogram of **3** in MeCN (1 x 10⁻⁴ mol.L⁻¹) with TBAClO₄ 0.1 M, at 0.1 V/s, using a three electrode arrange (work.: carbon; ref.: Ag/AgCl (org.); aux.: Pt wire). Fc/Fc⁺ was used as an internal reference.

Figure S20. Cyclic voltammogram of **4** in MeCN (1 x 10⁻⁴ mol.L⁻¹) with TBAClO₄ 0.1 M, at 0.1 V/s, using a three electrode arrange (work.: carbon; ref.: Ag/AgCl (org.); aux.: Pt wire). Fc/Fc⁺ was used as an internal reference.

Figure S21. UV-Visible spectra of **1** (2.0 x 10⁻⁴ mol.L⁻¹) in DMSO/phosphate buffer 1:9 at pH 6.2, from freshly prepared solution.

Figure S22. UV-Visible spectra of **1** (2.0 x 10⁻⁴ mol.L⁻¹) in DMSO/phosphate buffer 1:9 at pH 7.0, from freshly prepared solution.

Figure S23. UV-Visible spectra of **1** (2.0 x 10⁻⁴ mol.L⁻¹) in DMSO/phosphate buffer 1:9 at pH 7.4, from freshly prepared solution.

Figure S24. UV-Visible spectra of **2** (2.0 x 10⁻⁴ mol.L⁻¹) in DMSO/phosphate buffer 1:9 at pH 6.2, from freshly prepared solution.

Figure S25. UV-Visible spectra of **2** (2.0 x 10⁻⁴ mol.L⁻¹) in DMSO/phosphate buffer 1:9 at pH 7.0, from freshly prepared solution.

Figure S26. UV-Visible spectra of **2** (2.0 x 10⁻⁴ mol.L⁻¹) in DMSO/phosphate buffer 1:9 at pH 7.4, from freshly prepared solution.

Figure S27. UV-Visible spectra of **3** ($2.0 \times 10^{-4} \text{ mol.L}^{-1}$) in DMSO/phosphate buffer 1:9 at pH 6.2, from freshly prepared solution.

Figure S28. UV-Visible spectra of **3** ($2.0 \times 10^{-4} \text{ mol.L}^{-1}$) in DMSO/phosphate buffer 1:9 at pH 7.0, from freshly prepared solution.

Figure S29. UV-Visible spectra of **3** ($2.0 \times 10^{-4} \text{ mol.L}^{-1}$) in DMSO/phosphate buffer 1:9 at pH 7.4, from freshly prepared solution.

Figure S30. UV-Visible spectra of **4** (2.0 x 10⁻⁴ mol.L⁻¹) in DMSO/phosphate buffer 1:9 at pH 6.2, from freshly prepared solution.

Figure S31. UV-Visible spectra of **4** (2.0 x 10⁻⁴ mol.L⁻¹) in DMSO/phosphate buffer 1:9 at pH 7.0, from freshly prepared solution.

Figure S32. UV-Visible spectra of **4** (2.0 x 10⁻⁴ mol.L⁻¹) in DMSO/phosphate buffer 1:9 at pH 7.4, from freshly prepared solution.

Figure S33. UV-Visible spectra of HNQ-CH₃ (2.0 x 10⁻⁴ mol.L⁻¹) in DMSO/phosphate buffer 1:9 at pH 6.2, 7.0 and 7.4.

Figure S34. UV-Visible spectra of HNQ-Cl (2.0 x 10⁻⁴ mol.L⁻¹) in DMSO/phosphate buffer 1:9 at pH 6.2, 7.0 and 7.4.

Figure S35. UV-Visible spectra of HNQ-Br (2.0 x 10⁻⁴ mol.L⁻¹) in DMSO/phosphate buffer 1:9 at pH 6.2, 7.0 and 7.4.

Figure S36. UV-Visible spectra of HNQ-I (2.0 x 10⁻⁴ mol.L⁻¹) in DMSO/phosphate buffer 1:9 at pH 6.2, 7.0 and 7.4.

Figure S37. UV-Visible spectra of **1** (2.0 x 10^{-4} mol.L⁻¹) in DMSO/phosphate buffer 1:9 at pH 6.2 and in the presence of ten equivalents of ascorbic acid (AA) (2.0 x 10^{-3} mol.L⁻¹).

Figure S38. UV-Visible spectra of **1** (2.0 x 10^{-4} mol.L⁻¹) in DMSO/phosphate buffer 1:9 at pH 7.0 and in the presence of ten equivalents of ascorbic acid (AA) (2.0 x 10^{-3} mol.L⁻¹).

Figure S39. UV-Visible spectra of **1** (2.0 x 10^{-4} mol.L⁻¹) in DMSO/phosphate buffer 1:9 at pH 7.4 and in the presence of ten equivalents of ascorbic acid (AA) (2.0 x 10^{-3} mol.L⁻¹).

Figure S40. UV-Visible spectra of **2** ($2.0 \times 10^{-4} \text{ mol.L}^{-1}$) in DMSO/phosphate buffer 1:9 at pH 6.2 and in the presence of ten equivalents of ascorbic acid (AA) ($2.0 \times 10^{-3} \text{ mol.L}^{-1}$).

Figure S41. UV-Visible spectra of **2** ($2.0 \times 10^{-4} \text{ mol.L}^{-1}$) in DMSO/phosphate buffer 1:9 at pH 7.0 and in the presence of ten equivalents of ascorbic acid (AA) ($2.0 \times 10^{-3} \text{ mol.L}^{-1}$).

Figure S42. UV-Visible spectra of **2** ($2.0 \times 10^{-4} \text{ mol.L}^{-1}$) in DMSO/phosphate buffer 1:9 at pH 7.4 and in the presence of ten equivalents of ascorbic acid (AA) ($2.0 \times 10^{-3} \text{ mol.L}^{-1}$).

Figure S43. UV-Visible spectra of **3** (2.0 x 10^{-4} mol.L⁻¹) in DMSO/phosphate buffer 1:9 at pH 6.2 and in the presence of ten equivalents of ascorbic acid (AA) (2.0 x 10^{-3} mol.L⁻¹).

Figure S44. UV-Visible spectra of **3** (2.0 x 10^{-4} mol.L⁻¹) in DMSO/phosphate buffer 1:9 at pH 7.0 and in the presence of ten equivalents of ascorbic acid (AA) (2.0 x 10^{-3} mol.L⁻¹).

Figure S45. UV-Visible spectra of **3** (2.0 x 10^{-4} mol.L⁻¹) in DMSO/phosphate buffer 1:9 at pH 7.4 and in the presence of ten equivalents of ascorbic acid (AA) (2.0 x 10^{-3} mol.L⁻¹).

Figure S46. UV-Visible spectra of 4 (2.0 x 10^{-4} mol.L⁻¹) in DMSO/phosphate buffer 1:9 at pH 6.2 and in the presence of ten equivalents of ascorbic acid (AA) (2.0 x 10^{-3} mol.L⁻¹).

Figure S47. UV-Visible spectra of 4 (2.0 x 10^{-4} mol.L⁻¹) in DMSO/phosphate buffer 1:9 at pH 7.0 and in the presence of ten equivalents of ascorbic acid (AA) (2.0 x 10^{-3} mol.L⁻¹).

Figure S48. UV-Visible spectra of 4 (2.0 x 10^{-4} mol.L⁻¹) in DMSO/phosphate buffer 1:9 at pH 7.4 and in the presence of ten equivalents of ascorbic acid (AA) (2.0 x 10^{-3} mol.L⁻¹).

Figure S49. ESI-MS (positive scan) spectrum of 1 after reaction with ascorbic acid.

Figure S50. ESI-MS (negative scan) spectrum of 1 after reaction with ascorbic acid.