Cooperative Nature of Hydrogen Bonds in AT and GC Watson-Crick

DNA Base Pairs

Yulei Shi,^a Wanrun Jiang, ^b Zhiyuan Zhang, ^b and Zhigang Wang $^{\rm b,c\dagger}$

- ^{a.} Beijing Key Laboratory for Terahertz Spectroscopy and Imaging, Key Laboratory of Terahertz Optoelectronics, Ministry of Education, Department of Physics, Capital Normal University, Beijing 100048, China.
- b. Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China.
- ^{c.} Institute of Theoretical Chemistry, Jilin University, Changchun 130023, China.
- *†* Correspondence and requests for materials should be addressed to Z. W. (wangzg1978@hotmail.com or wangzg@jlu.edu.cn).

Supplementary Information

Part 1.

Supplementary Table S1 Optimized geometries for H-bonds in AT and GC pairs depicted in Fig.1.

Part 2.

Supplementary Figure S1 AT pairs with individual H-bonds: AT1 (containing H-bond A), AT2 (containing H-bond B), AT3 (containing H-bond C), and GC pairs with individual H-bonds: GC1 (containing H-bond D), GC2 (containing H-bond E), GC3 (containing H-bond F).

Part 3.

Supplementary Table S1 Atomic natural charge distribution (*e*) in A, C, T, G monomers, AT, GC conformers containing only one H-bond, and the AT, CG pairs.

Part 4.

Supplementary Figure S2 MOs involved in intremolecular interaction in AT and GC pairs. Isovalue: 0.02 a.u.

Part 5.

Supplementary Table S3: Energies for H-Bonds in Base Pairs.

Part 6.

Supplementary Figure S3: Calculated harmonic and anharmonic infrared spectra of (a) AT pair and (b) GC pair in the region 0-4000 cm⁻¹.

Part 1 Supplementary Table S1 Optimized geometries for H-bonds in AT and GC pairs depicted in Fig.1.

	Parameter	Bond length	Bond angles
	N6-H11 ···O6 (H-bond A)	1.9143	173.4
AT pair	$N1 \cdots H8-N3$ (H-bond B)	1.7754	179.8
	C2-H10 ··· O2 (H-bond C)	2.7552	133.3
	O6 ·H8-N4 (H-bond D)	1.7450	178.8
GC pair	N1-H10 ··· N3 (H-bond E)	1.8871	177.3
	N2-H11 ··· O2 (H-bond F)	1.8876	178.1

Bond length in Å and bond angles in degrees.

Part 2. Supplementary Figure 1 AT pairs with individual H-bonds: AT1 (containing H-bond A), AT2 (containing H-bond B), AT3 (containing H-bond C), and GC pairs with individual H-bonds: GC1 (containing H-bond D), GC2 (containing H-bond E), GC3 (containing H-bond F). The corresponding H-bond labels are given in Figure 1. The geometries of these structures were optimized with the constraints that (i) the planes of the bases remain perpendicular to each other, (ii) the X-H \cdots Y angles and the lengths of H-bonds remain fixed. H-bonds are illustrated by yellow dashed lines, and the atomic charges changes (positive charge: e) on forming the individual H-bonds are also given.

Part 3. Supplementary Table S2 Atomic natural charge distribution (*e*) in A, C, T, G monomers, AT, GC conformers containing only one H-bond, and the AT, CG pairs. The corresponding atomic labels are given in Figure 1. Atoms directly involved in H-bonds and their atomic charges are marked in bold.

	A and T	AT with	AT with	AT with	AT pair with
	monomers	H-bond A	H-bond B	H-bond C	three H-bonds
N1	-0.527	-0.554	-0.596	-0.553	-0.622
C2	0.289	0.289	0.316	0.286	0.306
N3	-0.539	-0.546	-0.525	-0.536	-0.535
C4	0.403	0.358	0.366	0.362	0.337
C5	-0.019	-0.007	-0.001	-0.005	0.087
C6	0.419	0.427	0.446	0.422	0.411
N6	-0.794	-0.764	-0.748	-0.763	-0.759
N7	-0.499	-0.494	-0.488	-0.493	-0.511
C8	0.232	0.233	0.243	0.239	0.236
N9	-0.603	-0.560	-0.554	-0.558	-0.558
H10	0.190	0.169	0.179	0.185	0.194
H11	0.400	0.436	0.403	0.399	0.439
H12	0.404	0.394	0.407	0.403	0.401
H13	0.213	0.190	0.195	0.193	0.193
H14	0.431	0.415	0.419	0.417	0.417
Adenine	0	-0.014	+0.062	-0.002	+0.036
N1	-0.620	-0.602	-0.609	-0.602	-0.602
C2	0.811	0.804	0.804	0.806	0.807
02	0.611	-0.619	-0.638	-0.622	-0.635
N3	0.640	-0.630	-0.683	-0.634	-0.664
C4	0.628	0.669	0.647	0.649	0.661
C5	-0.207	-0.166	-0.166	-0.166	-0.166
C6	0.106	0.075	0.064	0.067	0.074
С	-0.567	-0.585	-0.583	-0.584	-0.583
O6	-0.601	-0.642	-0.612	-0.602	-0.658
H7	0.423	0.419	0.412	0.416	0.415
H8	0.435	0.425	0.455	0.422	0.465
Н9	0.208	0.221	0.220	0.223	0.222
H10	0.199	0.204	0.199	0.201	0.201
H11	0.232	0.230	0.221	0.223	0.222
H12	0.204	0.209	0.203	0.206	0.206
Thymine	0	0.014	-0.062	+0.002	-0.036

(a) 2Charge distribution (e) of AT pair.

	G and C	GC with	GC with	GC with	GC pair with
	monomers	H-bond D	H-bond E	H-bond F	three H-bonds
N1	-0.599	-0.611	-0.664	-0.625	-0.645
C2	0.651	0.632	0.634	0.636	0.640
N2	-0.804	-0.783	-0.794	-0.791	-0.790
N3	-0.584	-0.587	-0.605	-0.606	-0.601
C4	0.411	0.365	0.357	0.361	0.372
C5	-0.043	-0.045	-0.053	-0.059	-0.057
C6	0.575	0.648	0.644	0.641	0.654
O 6	-0.651	-0.637	-0.610	-0.619	-0.682
N7	-0.439	-0.440	-0.449	-0.449	-0.450
C8	0.208	0.221	0.206	0.206	0.212
H14	0.215	0.194	0.188	0.188	0.189
N9	-0.604	-0.555	-0.559	-0.560	-0.561
H13	0.431	0.415	0.410	0.411	0.412
H10	0.427	0.414	0.444	0.415	0.448
H11	0.391	0.400	0.399	0.434	0.436
H12	0.416	0.414	0.404	0.400	0.399
Guanine	0	+0.045	-0.048	-0.017	-0.024
N1	-0.598	-0.598	-0.591	-0.588	-0.592
C2	0.776	0.765	0.788	0.797	0.795
02	-0.630	-0.653	-0.613	-0.708	-0.688
N3	-0.595	-0.599	-0.654	-0.587	-0.657
C4	0.443	0.441	0.465	0.449	0.468
N4	-0.761	-0.773	-0.749	-0.748	-0.737
C5	-0.372	-0.369	-0.368	-0.359	-0.351
C6	0.105	0.095	0.115	0.108	0.101
H7	0.412	0.411	0.417	0.416	0.416
H8	0.406	0.441	0.402	0.409	0.449
H9	0.388	0.376	0.494	0.392	0.385
H10	0.220	0.215	0.225	0.225	0.225
H11	0.206	0.203	0.211	0.212	0.210
Cytosine	0	-0.045	+0.048	+0.017	+0.024

(**b**) Charge distribution (*e*) of GC pair.

Part 4. Supplementary Figure S2 MOs involved in intrermolecular interaction in AT and GC pairs. Isovalue: 0.02 a.u.

(a) MOs in AT pairs.

Part 5 Supplementary Table S3: Energies for H-Bonds in Base Pairs with the Basis Set Superposition Error (BSSE) correction.

	Parameter	Interaction Energy
		-BSSE corrected
	AT pair	-17.65
	AT1 (H-bond A)	-5.21
AT pair	AT2 (H-bond B)	-7.33
	AT3 (H-bond C)	-1.17
	Cooperativity	-3.94
	GC pair	-29.69
	GC1 (H-bond D)	-5.14
GC pair	GC2 (H-bond E)	-10.56
	GC3 (H-bond F)	-11.91
	Cooperativity	-2.08

The interaction energy (kcal/mol) followed by the energies of each H-bond individually and the cooperativity (total interaction less the sum of the individual bonds).

Here, we performed the interaction calculation with the BSSE correction. For the latest DFT calculation, it adds the dispersion correction into the functional. This factor results in a stronger attraction*, for which the interaction energy of AT pair is -17.65 kcal/mol and of GC is -29.69 kcal/mol.

*a) A. Asensio, N. Kobko, and J. J. Dannenberg, J. Phys. Chem. A, 2003, 107, 6441;
b) J. Sponer, P. Jurecka, and P. Hobza, *J. Am. Chem. Soc.* 2004, 126, 10142.

Part 6. Supplementary Figure S3: Calculated harmonic and anharmonic infrared spectra of (a) AT pair and (b) GC pair in the region 0-4000 cm⁻¹.

