Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Electronic Supplementary Information

A New Approach to the Effects of Isocyanide (CN-R) Ligands on the Luminescence Properties of Cycloplatinated(II) Complexes

Hamid R. Shahsavari,^a* Reza Babadi Aghakhanpour,^a Mojdeh Hossein-Abadi,^a Mohsen Golbon Haghighi,^b Behrouz Notash,^b and Masood Fereidoonnezhad^c

^aDepartment of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Yousef Sobouti Blvd., Zanjan 45137-66731, Iran.

^bDepartment of Chemistry, Shahid Beheshti University, Evin, Tehran 19839-69411, Iran.

^cDepartment of Medicinal Chemistry, School of Pharmacy; Cancer, Environmental and Petroleum Pollutants Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.

Email: <u>shahsavari@iasbs.ac.ir</u>

Contents:	Page			
Figure S1. ¹ HNMR spectrum of [Pt(ppy)(Me)(CN-Bz)], 1 , in acetone d_6 .	3			
Figure S2. ¹³ CNMR spectrum of [Pt(ppy)(Me)(CN-Bz)], 1, in acetone d_6 .	4			
Figure S3. DEPT 135° spectrum of [Pt(ppy)(Me)(CN-Bz)], 1, in acetone d_6 .	5			
Figure S4. ¹⁹⁵ PtNMR spectrum of [Pt(ppy)(Me)(CN-Bz)], 1, in acetone d_6 .	6			
Figure S5. HHCOSY spectrum of $[Pt(ppy)(Me)(CN-Bz)]$, 1, in acetone d_6 .	7			
Figure S6. HSQC spectrum of $[Pt(ppy)(Me)(CN-Bz)]$, 1 , in acetone d_6 .	8			
Figure S7. ¹ HNMR spectrum of [Pt(ppy)(Me)(CN-2Np)], 2 , in acetone d_6 .	9			
Figure S8. ¹³ CNMR spectrum of [Pt(ppy)(Me)(CN-2Np)], 2 , in acetone d_6 .	10			
Figure S9. DEPT 135° spectrum of [Pt(ppy)(Me)(CN-2Np)], 2, in acetone d_6 .	11			
Figure S10. ¹⁹⁵ PtNMR spectrum of [Pt(ppy)(Me)(CN-2Np)], 2 , in acetone d_6 .	12			
Figure S11. HHCOSY spectrum of $[Pt(ppy)(Me)(CN-2Np)]$, 2, in acetone d_6 .	13			
Figure S12. HSQC spectrum of $[Pt(ppy)(Me)(CN-2Np)]$, 2, in acetone d_6 .	14			
Figure S13. ¹ HNMR spectrum of [Pt(ppy)(Me)(CN-tBu)], 3 , in acetone d_6 .	15			
Figure S14. ¹³ CNMR spectrum of [Pt(ppy)(Me)(CN-tBu)], 3 , in acetone d_6 .	16			
Figure S15. DEPT 135° spectrum of [Pt(ppy)(Me)(CN-tBu)], 3, in acetone d_6 .	17			
Figure S16. ¹⁹⁵ PtNMR spectrum of [Pt(ppy)(Me)(CN-tBu)], 3 , in acetone d_6 .	18			
Figure S17. HHCOSY spectrum of [Pt(ppy)(Me)(CN-tBu)], 3 , in acetone d_6 .	19			
Figure S18. HSQC spectrum of $[Pt(ppy)(Me)(CN-tBu)]$, 3, in acetone d_6 .	20			
Figure S19. View of the crystal packing for the complex 1.				
Figure S20. View of the crystal packing for the complex 3.				
Figure S21. Photographic images of 1-3 under visible and UV light in the solid state at room	23			
(298 K) and low temperature (77 K) and CH ₂ Cl ₂ glassy state (77 K).				
Figure S22. a) The XRD patterns for the complex 1 before and after grinding. b) Simulated	24			
PXRD pattern for the complex 1.				
Figure S23. DFT optimized structures in ground state for the complexes a) 1, b) 2 and c)3.	25			
Table S1. The energies of the selected MOs for the complex 1 and their compositions.	25			
Table S2. The energies of the selected MOs for the complex 2 and their compositions.	26			
Table S3. The energies of the selected MOs for the complex 3 and their compositions.	26			
Table S4. The MO plots for the complex 1.	27			
Table S5. The MO plots for the complex 2.	28			
Table S6. The MO plots for the complex 3.	29			
Table S7. Wavelengths and corresponding nature of transitions for the complex 1 where $M = Pt$, $L = nnv$ and $L' = CN Pz$.	30			
L = ppy and $L = CN-DZ$. Table S8 Wavelengths and corresponding nature of transitions for the complex 2 where $M = Pt$	31			
L = ppy and $L' = CN-2Np$.	51			
Table S9. Wavelengths and corresponding nature of transitions for the complex 3 where $M = Pt$, $L = ppv$ and $L' = CN-tBu$.	32			
Figure S24. Molecular orbital plots for the computed S_0 (left) and T_1 (right) states of complex 3 .	33			
Figure S25. Molecular orbital plots for the computed S_0 (left) and T_1 (right) states of complex 2.	34			
Table S10. Crystallographic and structure refinement data for 1 and 3.	35			

Figure S1. ¹HNMR spectrum of [Pt(ppy)(Me)(CN-Bz)], 1, in acetone d_6 .

Figure S2. ¹³CNMR spectrum of [Pt(ppy)(Me)(CN-Bz)], 1, in acetone d_6 .

Figure S3. DEPT 135° spectrum of [Pt(ppy)(Me)(CN-Bz)], 1, in acetone d_6 .

Figure S4. ¹⁹⁵PtNMR spectrum of [Pt(ppy)(Me)(CN-Bz)], 1, in acetone d_6 .

Figure S5. HHCOSY spectrum of [Pt(ppy)(Me)(CN-Bz)], 1, in acetone d_6 .

Figure S6. HSQC spectrum of [Pt(ppy)(Me)(CN-Bz)], **1**, in acetone d_6 .

Figure S7. ¹HNMR spectrum of [Pt(ppy)(Me)(CN-2Np)], **2**, in acetone d_6 .

Figure S8. ¹³CNMR spectrum of [Pt(ppy)(Me)(CN-2Np)], **2**, in acetone d_6 .

Figure S9. DEPT 135° spectrum of [Pt(ppy)(Me)(CN-2Np)], 2, in acetone d_6 .

Figure S10. ¹⁹⁵PtNMR spectrum of [Pt(ppy)(Me)(CN-2Np)], **2**, in acetone d_6 .

Figure S11. HHCOSY spectrum of [Pt(ppy)(Me)(CN-2Np)], 2, in acetone d_6 .

Figure S12. HSQC spectrum of [Pt(ppy)(Me)(CN-2Np)], **2**, in acetone d_6 .

Figure S13. ¹HNMR spectrum of [Pt(ppy)(Me)(CN-tBu)], 3, in acetone d_6 .

Figure S14. ¹³CNMR spectrum of [Pt(ppy)(Me)(CN-tBu)], **3**, in acetone d_6 .

Figure S15. DEPT 135° spectrum of [Pt(ppy)(Me)(CN-tBu)], 3, in acetone d_6 .

Figure S16. ¹⁹⁵PtNMR spectrum of [Pt(ppy)(Me)(CN-tBu)], **3**, in acetone d_6 .

Figure S17. HHCOSY spectrum of [Pt(ppy)(Me)(CN-tBu)], **3**, in acetone d_6 .

Figure S18. HSQC spectrum of [Pt(ppy)(Me)(CN-tBu)], 3, in acetone d_6 .

Figure S19. View of the crystal packing for the complex **1**.

Figure S20. View of the crystal packing for the complex 3.

Figure S21. Photographic images of **1-3** under visible and UV light in the solid state at room (298 K) and low temperature (77 K) and CH₂Cl₂ glassy state (77 K).

Figure S22. a) The XRD patterns for the complex 1 before and after grinding. b) Simulated PXRD pattern for the complex 1.

Figure S23. DFT optimized structures in ground state and gas phase for the complexes a) **1**, b) **2** and c) **3**.

MO	Energy (eV)	Components (%)			
		Pt	рру	CN-Bz	Me
LUMO+5	0.192	19	20	59	2
LUMO+4	-0.260	8	15	77	0
LUMO+3	-0.370	6	12	82	0
LUMO+2	-0.640	8	16	76	0
LUMO+1	-0.898	2	98	0	0
LUMO	-1.588	7	86	6	1
HOMO	-5.833	35	60	5	0
HOMO-1	-6.091	90	6	0	4
HOMO-2	-6.248	60	35	1	4
HOMO-3	-6.410	49	47	1	3
HOMO-4	-6.907	65	10	15	10
HOMO-5	-7.040	10	12	75	3

Table S1. The energies of the selected MOs for the complex 1 and their compositions.

MO	Energy (eV)	Components (%)			
		Pt	рру	CN-2Np	Me
LUMO+5	-0.011	18	24	53	5
LUMO+4	-0.116	16	34	47	3
LUMO+3	-0.918	2	98	0	0
LUMO+2	-0.996	3	12	85	0
LUMO+1	-1.453	3	58	39	0
LUMO	-1.860	7	29	63	1
HOMO	-5.805	33	48	19	0
HOMO-1	-6.166	80	8	0	2
HOMO-2	-6.221	14	37	47	2
HOMO-3	-6.345	40	28	29	3
HOMO-4	-6.469	58	34	4	4
HOMO-5	-6.903	7	16	77	0

Table S2. The energies of the selected MOs for the complex 2 and their compositions.

Table S3. The energies of the selected MOs for the complex 3 and their compositions.

MO	Energy (eV)	Components (%)			
		Pt	рру	CN-tBu	Me
LUMO+5	0.832	49	12	21	18
LUMO+4	0.697	19	69	11	1
LUMO+3	0.184	20	22	50	8
LUMO+2	-0.407	20	43	37	0
LUMO+1	-0.892	2	98	0	0
LUMO	-1.572	7	88	5	0
HOMO	-5.814	36	59	5	0
HOMO-1	-6.069	90	6	0	4
HOMO-2	-6.229	63	32	1	4
HOMO-3	-6.396	46	51	1	2
HOMO-4	-6.890	70	11	15	4
HOMO-5	-7.145	23	45	7	25

Table S4. The MO plots for the complex 1.

Table S5. The MO plots for the complex 2.

Table S6. The MO plots for the complex **3**.

Excited	Oscillator	Calculated λ	Transitions	Assignment
state	strength	(nm)	(Major Contribution)	
$S_0 \rightarrow S_1$	0.0494	353	HOMO→LUMO (95%)	ILCT, MLCT
$S_0 \rightarrow S_3$	0.1198	317	H-3→LUMO (13%)	ILCT, MLCT
			H-2→LUMO (80%)	MLCT, ILCT
$S_0 \rightarrow S_4$	0.0507	302	H-3→LUMO (49%)	ILCT, MLCT
			H-2→LUMO (11%)	MLCT, ILCT
			HOMO→L+1 (34%)	ILCT, MLCT, L'LCT
$S_0 \rightarrow S_5$	0.2094	283	H-3→LUMO (25%)	ILCT, MLCT
			HOMO→L+1 (61%)	ILCT, MLCT, L'LCT
$S_0 \rightarrow S_8$	0.1635	270	H-2→L+1 (32%)	MLCT, ILCT
			H-1→L+2 (11%)	ML'CT, MLCT
			HOMO→L+2 (38%)	ML'CT, LL'CT, ILCT
$S_0 \rightarrow S_{11}$	0.1786	264	H-2→L+1 (40%)	MLCT, ILCT
			HOMO→L+2 (21%)	ML'CT, LL'CT, ILCT
$S_0 \rightarrow S_{13}$	0.1770	256	HOMO→L+3 (42%)	ML'CT, LL'CT, ILCT
			HOMO→L+5 (13%)	ML'CT, LL'CT, ILCT

Table S7. Wavelengths and corresponding nature of transitions for the complex 1 where M = Pt, L = ppy and L' = CN-Bz.

	0 111			
Excited	Oscillator	Calculated λ	Transitions	Assignment
state	strength	(nm)	(Major Contribution)	
$S_0 \rightarrow S_1$	0.2852	369	HOMO→LUMO (87%)	ML'CT, LL'CT, ILCT
$S_0 \rightarrow S_3$	0.1958	333	H-4→LUMO (22%)	ML'CT, LL'CT, ILCT
			H-3→LUMO (37%)	ML'CT, ILCT, IL'CT
			H-2→LUMO (34%)	IL'CT, ILCT, ML'CT, LL'CT
$S_0 \rightarrow S_4$	0.1314	324	HOMO→L+1 (77%)	IL'CT, ILCT, ML'CT, MLCT
$S_0 \rightarrow S_5$	0.1430	314	H-3→LUMO (32%)	ML'CT, ILCT, IL'CT
			H-2→LUMO (45%)	IL'CT, ILCT, ML'CT, LL'CT
$S_0 \rightarrow S_7$	0.1196	309	H-4→LUMO (51%)	ML'CT, LL'CT, ILCT
			H-3→LUMO (14%)	ML'CT, ILCT, IL'CT
			HOMO→L+3 (10%)	MLCT, ILCT
$S_0 \rightarrow S_{12}$	0.1941	281	H-4→L+1 (13%)	MLCT, ML'CT
			H-3→L+1 (19%)	IL'CT, ILCT, ML'CT, MLCT
			H-2→L+1 (37%)	IL'CT, ILCT, L'LCT
			HOMO→L+3 (14%)	MLCT, ILCT
$S_0 \rightarrow S_{13}$	0.2461	277	H-5→LUMO (22%)	IL'CT, L'LCT
			H-3→L+1 (19%)	IL'CT, ILCT, ML'CT, MLCT
			HOMO→L+2 (22%)	ML'CT, LL'CT, IL'CT
$S_0 \rightarrow S_{18}$	0.2262	261	H-4→L+1 (10%)	MLCT, ML'CT
			H-3→L+3 (35%)	MLCT, ILCT, L'LCT
			H-2→L+3 (28%)	ML'CT, LL'CT, IL'CT
$S_0 \rightarrow S_{30}$	0.3414	242	H-5→L+1 (29%)	IL'CT, L'LCT, ILCT
			H-4→L+2 (20%)	ML'CT, LL'CT
			H-3→L+2 (15%)	ML'CT, IL'CT, LL'CT
			HOMO→L+4 (12%)	ML'CT, IL'CT, LL'CT

Table S8. Wavelengths and corresponding nature of transitions for the complex **2** where M = Pt, L = ppy and L' = CN-2Np.

Excited	Oscillator	Calculated λ	Transitions	Assignment
state	strength	(nm)	(Major Contribution)	
$S_0 \rightarrow S_1$	0.0419	354	HOMO→LUMO (95%)	MLCT, ILCT
$S_0 \rightarrow S_3$	0.1127	317	H-3→LUMO (11%)	MLCT, ILCT
			H-2→LUMO (82%)	MLCT, ILCT
$S_0 \rightarrow S_5$	0.2234	284	H-3→LUMO (29%)	MLCT, ILCT
			HOMO→L+1 (58%)	MLCT, ILCT
$S_0 \rightarrow S_8$	0.0835	268	H-2→L+1 (72%)	MLCT, ILCT
			HOMO→L+2 (17%)	ML'CT, LL'CT, ILCT
$S_0 \rightarrow S_{11}$	0.3854	259	H-2→L+1 (11%)	MLCT, ILCT
			H-2→L+2 (18%)	MLCT, ILCT, ML'CT
			HOMO→L+2 (50%)	ML'CT, LL'CT, ILCT
$S_0 \rightarrow S_{12}$	0.0937	253	H-3→L+1 (41%)	MLCT, ILCT
			H-3→L+2 (13%)	ILCT, ML'CT, LL'CT
			H-2→L+2 (26%)	MLCT, ILCT, ML'CT
			HOMO→L+2 (12%)	ML'CT, LL'CT, ILCT
$S_0 \rightarrow S_{13}$	0.1683	251	H-6→LUMO (14%)	MLCT, ILCT
			H-3→L+1 (42%)	MLCT, ILCT
			H-2→L+2 (19%)	MLCT, ILCT, ML'CT

Table S9. Wavelengths and corresponding nature of transitions for the complex **3** where M = Pt, L = ppy and L' = CN-tBu.

Figure S24. Molecular orbital plots for the computed S_0 (left) and T_1 (right) states of complex 3.

Figure S25. Molecular orbital plots for the computed S_0 (left) and T_1 (right) states of complex 2.

	1	3
Empirical formula	$C_{20}H_{18}N_2Pt$	$C_{17}H_{20}N_2Pt$
Formula weight	481.44	447.43
Temperature	298(2) K	293(2) K
Wavelength	0.71073 Å	0.71073 Å
Crystal system, space group	Monoclinic, C2/c	Orthorhombic, P212121
Unit cell dimensions	a = 21.311(4)Å	a = 9.3461(19) Å
	$\alpha = 90^{\circ}$	$\alpha = 90^{\circ}$
	b = 12.257(3) Å	b = 10.106(2) Å
	$\beta = 128.40(3)^{\circ}$	β= 90°
	c = 16.659(3) Å	c = 17.704(4) Å
	$\gamma = 90^{\circ}$	$\gamma = 90^{\circ}$
Volume	3410.2(19) Å ³	1672.2(6) Å ³
Z, Calculated density	8, 1.876 Mg/m ³	4, 1.777 Mg/m ³
Absorption coefficient	8.230 mm ⁻¹	8.383 mm ⁻¹
F(000)	1840	856
θ range for data collection	2.08 to 24.99°	2.30 to 25.00°
Limiting indices	-25<=h<=24,	-9<=h<=11,
	-14<=k<=14,	-10<=k<=12,
	-19<=1<=19	-19<=l<=21
Reflections collected	9010	5278
Completeness to θ	= 24.99, 99.9 %	= 25.00, 100.0 %
Independent reflections	3001 [R(int) = 0.0814]	2936 [R(int) = 0.1076]
Refinement method	Full-matrix least-squares on F ²	Full-matrix least-squares on F ²
Data / restraints / parameters	3001 / 0 / 209	2936 / 0 / 173
Goodness-of-fit on F ²	0.878	0.949
Final R indices [I>2sigma(I)]	R1 = 0.0375, wR2 = 0.0616	R1 = 0.0496, $wR2 = 0.1102$
R indices (all data)	R1 = 0.0736, $wR2 = 0.0678$	R1 = 0.0633, wR2 = 0.1141
Extinction coefficient	n/a	n/a
Largest diff. peak and hole	0.832 and -1.077 e.Å ⁻³	2.159 and -1.502 e. $Å^3$
CCDC No.	1569649	1569650

 Table S10. Crystallographic and structure refinement data for 1 and 3.