Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Supporting Information for:

Substituent Dependence of Imidazoline Derivatives on Capture and

Release System of Carbon Dioxide

Yoshiaki Yoshida, Naoto Aoyagi, Takeshi Endo*

Molecular Engineering Institute, Kindai University, 11-6 Kayanomori, Iizuka, Fukuoka

820-8555

*Corresponding authors. *E-mail address*: tendo@moleng.fuk.kindai.ac.jp

Fig 1S. ¹³C NMR (100 MHz, 25 °C) spectra of a solution of 1a in CD₃CN before and after bubbling CO_2 gas.

Fig 2S. ¹³C NMR (100 MHz, 25 °C) spectra of a solution of 2a in CD₃CN before and after bubbling CO₂ and Ar gas.

Fig 3S. ¹³C NMR spectra observed in D₂O containing 1,4-dioxane (DO, 0.4%) of (a) 1c, (b) 3c, and (c) 3c expanded at the range of 42.5-44.0 ppm and 160.0-162.0 ppm.

Fig 4S. Predicted pK_a value and HOMO level (eV) of imidazoline derivatives by using Advanced Chemistry Development (ACD/Labs) Software V11.02 (c 1994-2017 ACD/Labs) for pK_a and DFT calculation (B3LYP/6-31G*) for HOMO level.

Time	CO_2 fixation efficiency (%) ^{b,c}					CO ₂ adsorption capacity (mg/g) ^{b,c}				
(min)	1st		2nd		3rd	1st		2nd		3rd
	CO_2	Ar	CO_2	Ar	$\rm CO_2$	$\rm CO_2$	Ar	CO_2	Ar	$\rm CO_2$
10	98.7	9.6	99.1	9.6	98.7	307.5	29.9	308.8	30.0	307.3
20	99.0	7.4	99.2	7.5	98.8	308.3	23.1	309.1	23.4	307.9
30	99.2	6.1	99.2	6.1	98.9	308.9	18.9	309.1	19.1	307.9
60	99.3	2.7	99.3	2.7	99.3	309.4	8.3	309.3	8.6	309.5

Table S1. CO_2 fixation efficiency and adsorption capacity of 1c with flows of CO_2 and Ar^a

^a Under CO₂ and Ar flows (0.2 L/min) at 25 °C and 60 °C in dry DMSO. ^b Calculated based on bicarbonate **3c**. ^c Estimated from weight change of the reaction mixture.