Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Electronic supplemental information

A disc like Co₇ cluster with solvent dependent catecholase activity

M. Naqi Ahamad,^a Farasha Sama^{*a}, Muhammad Nadeem Akhtar^b, Yan-Cong Chen^b, Ming-Liang Tong^b, Musheer Ahmad^c, M. Shahid^{a*}, Sahid Hussain^d, Kulsum Khan^d

Experimental Section

Materials and methods

All experiments were carried out under aerobic conditions. The ligand (ampdH₂), NaSCN, $Co(NO_3)_2$ and $Co(OAc)_2$ were used as received. The solvents used in the reactions were reagent grade and used without further purification.

Physical methods

FTIR spectra were recorded on a Perkin-Elmer spectrum GX automatic recording spectrophotometer with sample prepared as KBr discs. Melting point was determined by open capillary method and is uncorrected. Absorption spectroscopic measurements were carried out at room temperature; using a Perkin-Elmer Lambda-25 UV-visible spectrophotometer in 10^{-3} M solution in CH₃OH, cu-vettes of 1 cm path length. PXRD patterns have been recorded by "MiniflexII X-ray diffractometer" with Cu-K α radiation. Molar conductivity of 10^{-3} M aqueous solution was recorded on Systronics-305 digital conductivity bridge at room temperature. Thermal gravimetric analysis (TGA) data were recorded from room temperature up to 700 °C at a heating rate of 20 °C/min. The data were obtained using a Shimadzu TGA-50H instrument. Magnetic susceptibility was measured by using a Quantum Design MPMS-XL7 SQUID magnetometer. Data were corrected for the diamagnetic contribution calculated from Pascal constants.

X-ray crystal structure determination and refinements

Single-crystal X-ray data of **1** were collected at 296(2) K on a Bruker SMART APEX CCD diffractometer using graphite monochromated Mo-K α radiation ($\lambda = 0.71073$ Å). The linear absorption coefficients, scattering factors for the atoms and the anomalous dispersion corrections were taken from the International Tables for X–ray Crystallography [1]. The data integration and reduction were processed with SAINT Software [2]. An empirical absorption correction was applied to the collected reflections with SADABS [3] and the space group was determined using XPREP [4]. The structure was refined using full-matrix least-squares techniques on F^2 using the OLEX-2 program package [5a] and version 2017/1 of ShelXL program package [5b]. All non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen positions were fixed at calculated positions and refined isotropically. Electron density contributing to the disordered solvent water molecules was masked using Olex-2 (Table 4S). CCDC reference number for **1** is 1570038.

Synthesis of 1

The slow stirring of ampdH₂ (5 mmol) and 10 mmol NaSCN for ten minutes in methanol produces a clear clolourless solution. To this solution was added dropwise methanolic solution (5 ml) of 10 mmol $Co(NO_3)_2$ or $Co(OAc)_2$ under aerobic conditions. After 2 hr stirring the brown solution was kept overnight which afforded reddish brown crystals of **1**.

[Yield: 56%, m.p. = 270 C, Molar conductance, Λ_m (10⁻³ M, methanol): 65 $\Omega^{-1}cm^2mol^{-1}$. Anal. Calcd. (%) for $C_{30}H_{62}Co_7N_{12}O_{20}S_6$: C 23.77; H 4.12; N 11.09, S = 12.69. Found (%): C 23.33; H 4.57; N 11.14, S = 12.87. Molar conductance, Λ_m (10⁻³ M, methanol): 65 $\Omega^{-1}cm^2mol^{-1}$. IR spectra (KBr pellets, cm⁻¹): v(O–H): 3448, v(C–H): 2877, 2950, 2962, v(C–O): 990, 1012, v(C–N): 1125, 1260, v(NH₂): 3293, 3236, u(SCN): 2079.

References

1 J. A. Ibers and W. C. Hamilton, International Tables for X-ray Crystallography, Kynoch Press, Birmingham, England, 1974, vol. IV.

2 SMART & SAINT Software Reference manuals, Version 6.45, Bruker Analytical X-ray Systems, Inc., Madison, WI, 2003.

3 G. M. Sheldrick, SADABS, software for empirical absorption correction, Ver. 2.05, University of Go"ttingen, Go"ttingen, Germany, 2002.

4 XPREP, version 5.1, Siemens Industrial Automation Inc., Madison, WI, 1995.

5 (a) O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, *J. Appl. Crystallogr.*, 2009, **42**, 339 (b) G.M. Sheldrick, *Acta Cryst.*, 2015, **C27**, 3-8.

Fig. 1S. (a) Thermogram of the 1. (b) Simulated and as-synthesized PXRD patterns of 1.

Fig. 2S. Existence of 1D chain as a result of S…H interactions.

Fig. 3S. In-phase (x') and out-of-phase (x'') AC susceptibility measurements at different frequencies and applied dc fields for **1**.

Table 1S. Crystal data for 1.

Compound	1
Formula	C ₃₀ Co ₇ H ₇₄ N ₁₂ O ₂₂ S ₆
D_{calc} / g cm ⁻³	1.656
μ/mm^{-1}	2.084
Formula Weight	1559.88
Colour	Red
Shape	block
Size/mm ³	0.28×0.19×0.14
T/K	296(2)
Crystal System	monoclinic
Space Group	C2/c
a/Å	22.4034(16)
b/Å	14.9191(16)
c/Å	20.435(2)
$\alpha/^{\circ}$	90
$\beta/^{\circ}$	113.618(4)
$\gamma / ^{\circ}$	90
V/Å ³	6258.1(10)
Z	4
Ζ'	0.5
Wavelength/Å	0.71073
Radiation type	MoK _α
$\Theta_{min}/^{\circ}$	2.731
$\Theta_{max}/^{\circ}$	24.997
Measured Refl.	47412
Independent Refl.	5494
Reflections Used	2976
R _{int}	0.1051
Parameters	307
Restraints	0
Largest Peak	0.810
Deepest Hole	-0.684
GooF	1.027
wR_2 (all data)	0.1793
wR_2	0.1514
R_1 (all data)	0.1268
R_1	0.0664

Table 2S. Selected bond lengths (Å) and bond angles (°) of 1.

Atom	Atom	Length/Å	
Co1	Co21	2.9836(11)	
Co1	Co2	2.9837(11)	
Co1	Co3	2.974(2)	
Co1	04	2.091(4)	
Co1	041	2.091(4)	
Co1	05	2.086(5)	
Co1	051	2.086(5)	
Co1	011	2.106(4)	
Co1	01	2.106(4)	
Co2	04	1.901(4)	
Co2	02	1.874(5)	
Co2	01	1.898(4)	
Co2	03	1.878(5)	
Co2	N2	1.929(5)	
Co2	N1	1.931(6)	
Co3	051	1.900(5)	
Co3	05	1.900(5)	
Co3	061	1.877(5)	
Co3	06	1.877(5)	
Co3	N31	1.936(6)	
Co3	N3	1.936(6)	
Co4	011	2.261(4)	
Co4	01	2.262(4)	
Co4	031	2.027(4)	
Co4	03	2.027(4)	
Co4	N41	2.062(7)	
Co4	N4	2.062(7)	
Co5	04	2.265(4)	
Co5	051	2.273(4)	
Co5	02	2.008(5)	
Co5	06	2.000(5)	
Co5	N6	2.058(8)	
Co5	N5	2.061(7)	
S2	C14	1.589(9)	
S1	C13	1.647(11)	
04	C8	1.451(7)	
05	C11	1.440(7)	
02	C4	1.421(8)	
01	C3	1.430(7)	
03	C7	1.431(8)	
06	C12	1.401(9)	
S3	C15	1.646(12)	
N2	C6	1.499(8)	
N1	C2	1.540(9)	
N6	C15	1.100(11)	
N3	C10	1.521(10)	
N5	C14	1.141(9)	
C3	C2	1.514(10)	
C8	C6	1.494(10)	
C6	C7	1.520(11)	
C6	C5	1.518(9)	
C11	C10	1.506(11)	
N4	C13	1.143(10)	
C4	C2	1.529(11)	
C2	C1	1.510(10)	
C12	C10	1.538(11)	
		1 505(10)	

Symmetry code: ¹1-x, +y, 3/2-z

Table 2S. continued.....

Atom	Atom	Atom	Angle/°	
Co2 ¹	Co1	Co2	120.27(6)	
Co3	Co1	Co21	119.87(3)	
Co3	Co1	Co2	119.87(3)	
04 ¹	Co1	Co2	134.98(13)	
04 ¹	Co1	Co21	39.25(12)	
04	Co1	Co2	39.25(12)	
04	Co1	$Co2^1$	134.99(13)	
04 ¹	Co1	Co3	93.88(13)	
04	Co1	Co3	93.88(13)	
04	Co1	04^{1}	172 2(3)	
04^{1}	Co1	01^{1}	78 47(16)	
04^{1}	Co1	01	95 98(16)	
04	Co1	01^{1}	95 98(16)	
04	Co1	01	7847(16)	
051	Co1	Co2	9374(12)	
051		$Co2^{1}$	93.74(12) 124.77(12)	
05		Co2	134.7(12) 124.70(12)	
05		$C_0 2^1$	134.70(12) 0272(12)	
05		Co2-	20 42(12)	
05		C03	39.42(13)	
051		041	39.41(13)	
051		041	95.76(16)	
05	Co1	04-	90.24(17)	
051		04	90.24(17)	
05		04	95.77(16)	
05		051	/8.8(3)	
051		01	95.76(17)	
05	Col	01	172.16(17)	
051	Co1	01^{1}	172.16(17)	
05	Co1	011	95.76(17)	
01	Co1	Co2 ¹	94.10(12)	
011	Co1	Co2	94.10(12)	
01	Co1	Co2	39.22(11)	
01^{1}	Co1	Co21	39.22(11)	
01	Co1	Co3	134.92(12)	
01^{1}	Co1	Co3	134.92(12)	
01	Co1	01^{1}	90.2(2)	
04	Co2	Co1	44.11(12)	
04	Co2	N2	83.8(2)	
04	Co2	N1	167.6(2)	
02	Co2	Co1	89.22(15)	
02	Co2	04	85.3(2)	
02	Co2	01	93.83(19)	
02	Co2	03	178.9(2)	
02	Co2	N2	95.0(2)	
02	Co2	N1	85.4(2)	
01	Co2	Co1	44.57(13)	
		~ .		

01	Co2	N2	167.8(2)
01	Co2	N1	83.8(2)
03	Co2	Co1	89.84(14)
03	Co2	04	93.7(2)
03	Co2	01	85.84(19)
03	Co2	N2	85.1(2)
03	Co2	N1	95.6(2)
N2	Co2	Co1	127.22(17)
N2	Co2	N1	105.2(2)
N1	Co2	Co1	127.57(17)
05	Co3	Co1	44.20(14)
051	Co3	Co1	44.20(13)
05 ¹	Co3	05	88.4(3)
05 ¹	Co3	$N3^{1}$	83.7(2)
05 ¹	Co3	N3	167.8(2)
05	Co3	N31	167.8(2)
05	Co3	N3	83.7(2)
06	Co3	Co1	89.52(17)
06 ¹	Co3	Co1	89.52(17)
06 ¹	Co3	05 ¹	93.2(2)
06 ¹	Co3	05	86.1(2)
06	Co3	05	93.2(2)
06	Co3	05 ¹	86.1(2)
06	Co3	06 ¹	179.0(3)
06	Co3	N31	95.4(3)
06 ¹	Co3	N31	85.1(3)
06 ¹	Co3	N3	95.4(3)
06	Co3	N3	85.1(2)
N3	Co3	Co1	127.3(2)
$N3^1$	Co3	Co1	127.3(2)
$N3^1$	Co3	N3	105.4(4)
01 ¹	Co4	01	82.5(2)
03	Co4	011	93.87(17)
03	Co4	01	73.44(17)
0 3 ¹	Co4	01	93.87(17)
03 ¹	Co4	01 ¹	73.44(17)
03	Co4	03 ¹	163.4(3)
03 ¹	Co4	$N4^{1}$	94.1(2)
03 ¹	Co4	N4	96.7(2)
03	Co4	$N4^{1}$	96.7(2)
03	Co4	N4	94.1(2)
$N4^1$	Co4	011	165.2(2)
N4	Co4	01	165.2(2)
N4	Co4	011	90.6(2)
$N4^1$	Co4	01	90.6(2)
$N4^1$	Co4	N4	98.8(4)
04	Co5	05 ¹	81.39(15)
02	Co5	04	73.25(17)
02	Co5	05 ¹	92.64(18)
02	Co5	N6	95.4(3)
02	Co5	N5	95.3(2)
06	Co5	04	93.30(19)
06	Co5	05 ¹	73.89(18)
06	Co5	02	162.47(19)
06	Co5	N6	95.9(3)
-		-	

06	Co5	N5	96.5(2)
N6	Co5	04	165.6(3)
N6	Co5	05 ¹	90.5(2)
N6	Co5	N5	97.4(3)
N5	Co5	04	92.6(2)
N5	Co5	051	168.2(2)
Co1	04	Co5	94.24(16)
Co2	04	Co1	96.64(18)
Co2	04	Co5	95.62(17)
C8	04	Co1	134.2(4)
C8	04	Co2	109.1(4)
C8	04	Co5	119.1(4)
Co1	05	$Co5^1$	94.13(16)
Co3	05	Co1	96.39(18)
Co3	05	$Co5^1$	94.77(18)
C11	05	Co1	132.8(4)
C11	05	Co3	109.7(4)
C11	05	$Co5^1$	120.9(4)
Co2	02	Co5	105.8(2)
C4	02	Co2	111.8(5)
C4	02	Co5	132.4(5)
Co1	01	Co4	93.66(15)
Co2	01	Co1	96.21(17)
Co2	01	Co4	95.85(17)
C3	01	Co1	132.0(4)
C3	01	Co2	109.7(3)
C3	01	Co4	121.7(4)
Co2	03	Co4	104.9(2)
C7	03	Co2	109.9(5)
C7	03	Co4	134.3(4)
Co3	06	Co5	105.2(2)
C12	06	Co3	111.1(5)
C12	06	Co5	134.2(5)
C6	N2	Co2	98.5(4)
C2	N1	Co2	97.6(4)
C15	N6	Co5	153.0(10)
C10	N3	Co3	98.0(5)
C14	N5	Co5	167.1(7)
01	C3	C2	110.4(5)
04	C8	C6	109.9(5)
N2	C6	C7	102.8(6)
N2	C6	C5	112.7(6)
C8	C6	N2	105.3(6)
C8	C6	C7	111.1(6)
C8	C6	C5	111.3(7)
C5	C6	C7	113.1(7)
05	C11	C10	110.1(6)
03	C7	C6	109.7(6)
C13	N4	Co4	155.3(8)
02	C4	C2	108.5(6)
C3	C2	N1	103.8(6)
C3	C2	C4	110.9(7)
C4	C2	N1	103.5(6)
C1	C2	N1	112.9(7)
C1	C2	C3	112.5(7)

C1	C2	C4	112.5(7)
06	C12	C10	109.6(6)
N5	C14	S2	178.0(9)
N6	C15	S3	172.8(11)
N4	C13	S1	177.5(9)
N3	C10	C12	102.1(7)
C11	C10	N3	105.1(6)
C11	C10	C12	110.5(7)
C9	C10	N3	111.9(7)
С9	C10	C11	113.2(7)
<u>C9</u>	C10	C12	113.2(7)

Symmetry code: ¹1-x,+y,3/2-

Table

	3S. Bond valence summation (BVS)
-	parameters for 1 .

Atom	Co(II)	Co(III)
Co1	1.9420	1.7592
Co2	3.5164	3.1093
Co2	3.5164	3.1093
Co3	3.4092	2.8726
Co4	2.0268	1.7936
Co5	2.1102	1.8675
Co5	2.1102	1.8675

Table 4S: Solvent masking information for **1**.

No	X	у	Z	V	е	Content
1	0.255	0.250	0.505	912.2	198.4	5H ₂ 0
2	-0.285	0.750	-0.535	912.2	198.4	5H ₂ O