Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Supporting information for

Highly efficient and stable green-emitting mesoporous silica (MP)-(Cs_{0.4}Rb_{0.6})PbBr₃ perovskite composite for application in optoelectronic device

Young Hyun Song ^{a,1}, Seung Hee Choi^{b,1}, Won Kyu Park^{b1}, Jin Sun Yoo^{b,1}, Bong Kyun Kang^b, Seok Bin Kwon^b, Hyun Suk Jung^{b,*}, Woo Seok Yang^{c,*}, Dae Ho Yoon^{b,*}

^aDepartment of Nanotechnology and Advanced Material Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea ^bSchool of Advanced Materials Science and Engineering, Sungkyunkwan, Suwon 440-746, Republic of Korea, ^cElectronic Materials and Device Research Center, Korea Electronics Technology Institute, Seongnam 463-816, Republic of Korea

¹These authors contributed equally.

Journal: New Journal of Chemistry

Materials

All chemicals were used without purification. Cesium carbonate (Cs₂CO₃, 99.9%), lead (II) bromide (PbBr₂, 98%), 1-octadecene (ODE, 90%), oleic acid (OA, 65.0-88.0%), oleylamine (OLA, 70%), and toluene (99.8%) were purchased from Sigma Aldrich. The mesoporous silica (SBA-15) and polydimethylsiloxane (PDMS, Sylgard 184) were purchased from ACS material and Dow Corning respectively.

Synthesis of the (Cs_{1-x}Rb_x)PbBr₃

To prepare Cs-oleate solution, 1.228 mmol Cs_2CO_3 and Rb_2CO_3 calculated from the stoichiometric ratio was loaded into a 40 mL vial in a glovebox. 1.25 mL 1- (ODE) and 15 mL (OA) were also loaded into the vial. The mixture was stirred at 120 °C for 30 min and the temperature was then increased to 150 °C. 0.376 mmol (0.138 g) PbBr₂ and 10 mL 1-ODE were then loaded into the vial and stirred for 1 h at 120 °C in an oil bath. 1 mL OLA and 1 mL OA were injected into the vial at 120 °C. The temperature was then increased with a heating ratio of around 2 °C/min and 0.8 mL Cs-oleate solution was quickly injected at 180 °C. After 5 seconds, the mixed solution was cooled in an ice bath. The residue was removed by centrifugation at 8000 rpm for 15 min. The ($Cs_{0.4}Rb_{0.6}$)PbBr₃ perovskite NCs were then purified by centrifugation at 8000 rpm for 15 min using 5 mL toluene. The sample was then re-dispersed in solvent.

Preparation of MP-(Cs_{0.4}Rb_{0.6})PbBr₃ composite

The mesoporous silica with an average pore diameter of 7-10 nm was dried at 60 °C under vacuum. 0.1 g of mesoporous silica and 2 mL of the prepared $(Cs_{0.4}Rb_{0.6})PbBr_3$ perovskite NCs solution with concentrations of 0.030 M and 0.012 M ($(Cs_{0.4}Rb_{0.6})PbBr_3$, 17.5 mg mL⁻¹ and 7 mg mL⁻¹) in toluene, respectively, were mixed and stirred for 10 h at room temperature (RT). The mixture was filtered with a 0.2 µm pore sized filter. The obtained sample was then dried at 50 °C for 30 min in a vacuum oven.

Fabrication of white LEDs

 $Sr_2Si_5N_8$:Eu²⁺ red phosphor 0.005 g was added in 9.9 g of PDMS with ratio of 10:1 (elastomer base 9 g:curing agent 0.9 g) wt% and mixed using vortex mixer. 0.14 g of the mixture and 0.01 g of the prepared MP-Cs_{0.4}Rb_{0.6}PbBr₃ powder were mixed. After then, air bubbles were removed in the vacuum oven for 3 min at RT. The mixture was placed on 450 nm InGaN blue LED chips and cured at 100°C for 35 min.

Characterization

The crystalline phase of the (Cs_{1-x}Rb_x)PbBr₃ perovskite with different ratios of Cs/Rb NCs was identified using X-ray diffraction (XRD, D-MAX 2500, Rigaku, Tokyo, Japan) and a CuK α target with a 10° $\leq \theta \leq$ 50° alignment. High-resolution transmission electron microscopy (HRTEM) and energy dispersive spectroscopy (EDS) mapping were measured with a JEM2100F with an accelerating voltage of 200 kV. X-ray photoelectron spectra (XPS) were analyzed using an X-ray photoelectron spectrometer (ULVAC-PHI, Inc) with an excitation source of Al-K α radiation (1486.7 eV). The photoluminescence quantum yield (PLQY) was examined for compounds using an Absolute PL Quantum Yield Spectrometer (HAMAMATSU C11347). The electroluminescence (EL) properties of MP-(Cs_{0.4}Rb_{0.6})PbBr₃ on the surface of the InGaN blue LED chip for white light generation were measured using the optically coupled isolator (OPI-150-Optel-precision) system.

Figure S1. Y.H. Song et al.

Figure S2. Y.H. Song et al.

Figure S3. Y.H. Song et al.

Sample		CsPbBr ₃	(Cs _{0.7} Rb _{0.3})PbBr ₃	(Cs _{0.4} Rb _{0.6})PbBr ₃
Precursor ratio	Cs:Rb	1:0	7:3	4:6
	Cs 3d	1	0.795	0.506
Elements	Rb 3d	0	0.205	0.494
(Conc.%)	Pb 4f	1.15	0.99	0.743
	Br 3d	3.04	2.756	2.436
XPS ratio	Cs:Rb	1:0	~8:2	~5:5

Table	S1.	Y.H.	Sona	еt	al.
Table	JT.	1.11.	Jung	cι	ur.

Figure S4. Y.H. Song et al.