Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

1

Supplementary Data

Rare, Hypodentate L- κS Coordination Mode of *N*,*N*-dialkyl-*N*'-aroylthioureas leads to Unprecedented Mixed-ligand [Pt(phen)(L- κS)₂] Complexes.

Izak A. Kotzé, Edmore F. Kangara, Vincent J. Smith and Klaus R. Koch

Fig. S1. ¹H NMR spectra (a) of a sample of purified $[Pt(phen)(L^1-\kappa O,S)]^+$ as the chloride salt, in CDCl₃ and (b) the isolated crude reaction mixture obtained in the attempted synthesis of (a) containing a significant amount of the previously 'unknown' $[Pt(phen)(L^1-\kappa S)_2]$. Expansions are shown for both 'aromatic' and 'aliphatic' proton regions of the ¹H NMR spectrum for clarity, and to highlight the differences in the spectra of these complexes.

Fig. S2. A ¹H NMR spectrum of an isolated essentially 98% pure sample of $[Pt(phen)(L^1-\kappa S)_2]$ in chloroform- d_1 with assignments (* traces of ethanol).

Fig. S3. The molecular structure and numbering of $[Pt(phen)(L^1-\kappa S)_2]$, highlighting the striking offset *intra*-molecular stacking between the naphthoyl moieties and the Pt(phen)-moiety in this complex.

Fig. S4. Packing diagram of the crystal structure of $[Pt(phen)(L^1-\kappa S)_2]$ viewed along the *b* axis.

Table S1. Selected bond lengths for $[Pt(phen)(L^1-\kappa S)_2]$.

Bonds:	Å
Pt1-S2	2.2838(8)
Pt1-N1	2.056(2)
Pt1-N2	2.056(2)
S1-C1A	1.784(3)
S2-C1B	1.779(3)
O1-C2B	1.225(4)
02-C2A	1.238(3)
N1-C30	1.328(3)
N1-C31	1.373(4)
N2-C21	1.327(4)
N2-C32	1.368(5)
N3-C1A	1.361(4)
N3-C13A	1.459(4)
N3-C17A	1.469(4)
N4-C1A	1.295(4)
N4-C2A	1.362(4)
N5-C1B	1.353(4)
N5-C13B	1.468(4)
N5-C17B	1.471(4)
N6-C1B	1.304(4)
N6-C2B	1.375(5)

Fig. S5. A representative portion of an ¹H NMR spectrum of the isolated product of a reaction of 2.02 eq. HL³ with 1 eq. of [Pt(phen)Cl₂] in methanol; Note that the major product is [Pt(phen)(L³- κS ,*O*)]⁺Cl⁻, while the minor product [Pt(phen)(L³- κS)₂] is only formed in a *ca* 9 % overall yield (highlighted ¹H NMR peaks). Repetition of such synthesis with higher ratios of HL³ : [Pt(phen)Cl₂] of up to 4:1, did not result in significantly larger amounts of [Pt(phen)(L³- κS)₂] being found upon work up of this relatively unstable product.

Fig. S6. Numbering scheme of selected atoms and groups of the molecular structure of $[Pt(phen)(L^2-\kappa S)_2]$. Hydrogen atoms omitted for clarity, with the exception of a water molecule, H-bonded to the pendant C(O) group of the phenyl amide moiety of this complex.

Pt1-S1B 2.280(2) Pt1-S2B 2.280(2)
Pt1-S2B 2.280(2)
D+1 NEP 2.060(6)
Pt1-N6B 2.000(0)
$D_{+}2_{-}S1A = 2.030(0)$
P(2-51A = 2.275(2)) P(2-51A = 2.275(2))
P(2-32A = 2.204(2)) P(2-N5A = 2.057(6))
Pt2-N6A 2.057(0)
S1B-C1B 1 7/6(7)
S2B-C13B 1.740(7)
520 C150 1.751(0) 510-C10 1.741(7)
S2A-C13A 1.748(7)
01B-C2B 1 242(9)
O2B-C14B 1 233(10)
02A-C14A 1.238(9)
O1A-C2A 1.242(9)
N1B-C2B 1.359(9)
N1B-C1B 1.320(9)
N2B-C11B 1.474(9)
N2B-C1B 1.349(9)
N2B-C9B 1.480(9)
N3B-C13B 1.343(10)
N3B-C17 1.511(12)
N3B-C14 1.472(12)
N4B-C13B 1.310(10)
N4B-C14B 1.349(11)
N5B-C32B 1.365(9)
N5B-C21B 1.327(10)
N6B-C31B 1.369(9)
N6B-C30B 1.317(10)
N1A-C1A 1.320(9)
N1A-C2A 1.333(9)
N2A-C1A 1.352(9)
N2A-C9A 1.480(9)
N2A-C11A 1.439(9)

Table S2. Selected bond lengths for $[Pt(phen)(L^2-\kappa S)_2]$.

Bonds:	Å
N3A-C13A	1.356(9)
N3A-C21A	1.516(11)
N3A-C23A	1.493(9)
N4A-C14A	1.353(9)
N4A-C13A	1.318(9)
N5A-C25A	1.340(10)
N5A-C36A	1.348(9)
N6A-C34A	1.324(10)
N6A-C35A	1.381(9)

Table S2. Selected bond lengths for $[Pt(phen)(L^2-\kappa S)_2]$.

Table S3. Selected hydrogen bond distanced in $[Pt(phen)(L^2-\kappa S)_2]$

H-Bond DA (Å) DA (°) Sym	n. Op
O4—HB O1B 1.88(6) 2.877(8) 170(5) -x,-	·y,-z
O4—HA O2A 1.87(3) 2.837(7) 163(7) 1-x,	-y,-z
O3 H3A O2B 1.93(5) 2.914(8) 167(6) 1-x,	-y,-z
O3 H3B O1A 1.83(7) 2.812(8) 168(6) 1-x, 1	-y,-z