Supplementary Data

Rare, Hypodentate L-kS Coordination Mode of \mathbf{N}, \mathbf{N}-dialkyl- N^{\prime}-aroylthioureas leads to Unprecedented Mixed-ligand $\left[\operatorname{Pt}(\mathrm{phen})(\mathrm{L}-\mathrm{kS})_{2}\right]$ Complexes.

Izak A. Kotzé, Edmore F. Kangara, Vincent J. Smith and Klaus R. Koch

Fig. S1. ${ }^{1} \mathrm{H}$ NMR spectra (a) of a sample of purified $\left[\mathrm{Pt}(\mathrm{phen})\left(\mathrm{L}^{1}-\kappa O, S\right)\right]^{+}$as the chloride salt, in CDCl_{3} and (b) the isolated crude reaction mixture obtained in the attempted synthesis of (a) containing a significant amount of the previously 'unknown' $\left[\operatorname{Pt}(\mathrm{phen})\left(\mathrm{L}^{1}-\kappa S\right)_{2}\right]$. Expansions are shown for both 'aromatic' and 'aliphatic' proton regions of the ${ }^{1} \mathrm{H}$ NMR spectrum for clarity, and to highlight the differences in the spectra of these complexes.

Fig. S2. A ${ }^{1} \mathrm{H}$ NMR spectrum of an isolated essentially 98% pure sample of $\left[\operatorname{Pt}(\operatorname{phen})\left(\mathrm{L}^{1}-\mathrm{K} S\right)_{2}\right]$ in chloroform- d_{l} with assignments (* traces of ethanol).

Fig. S3. The molecular structure and numbering of $\left[\operatorname{Pt}(\mathrm{phen})\left(\mathrm{L}^{1}-\kappa S\right)_{2}\right]$, highlighting the striking offset intra-molecular stacking between the naphthoyl moieties and the $\operatorname{Pt}(\mathrm{phen})$-moiety in this complex.

Fig. S4. Packing diagram of the crystal structure of $\left[\operatorname{Pt}(\mathrm{phen})\left(\mathrm{L}^{1}-\kappa S\right)_{2}\right]$ viewed along the b axis.

Table S1. Selected bond lengths for $\left[\operatorname{Pt}(\right.$ phen $\left.)\left(\mathrm{L}^{1}-\kappa S\right)_{2}\right]$.

Bonds:	\AA
Pt1-S2	$2.2838(8)$
Pt1-N1	$2.056(2)$
Pt1-N2	$2.056(2)$
S1-C1A	$1.784(3)$
S2-C1B	$1.779(3)$
O1-C2B	$1.225(4)$
O2-C2A	$1.238(3)$
N1-C30	$1.328(3)$
N1-C31	$1.373(4)$
N2-C21	$1.327(4)$
N2-C32	$1.368(5)$
N3-C1A	$1.361(4)$
N3-C13A	$1.459(4)$
N3-C17A	$1.469(4)$
N4-C1A	$1.295(4)$
N4-C2A	$1.362(4)$
N5-C1B	$1.353(4)$
N5-C13B	$1.468(4)$
N5-C17B	$1.471(4)$
N6-C1B	$1.304(4)$
N6-C2B	$1.375(5)$

Fig. S5. A representative portion of an ${ }^{1} \mathrm{H}$ NMR spectrum of the isolated product of a reaction of 2.02 eq. HL^{3} with 1 eq. of $\left[\mathrm{Pt}(\mathrm{phen}) \mathrm{Cl}_{2}\right]$ in methanol; Note that the major product is $\left[\mathrm{Pt}(\mathrm{phen})\left(\mathrm{L}^{3}-\mathrm{\kappa S}, O\right)\right]^{+} \mathrm{Cl}^{-}$, while the minor product $\left[\mathrm{Pt}(\right.$ phen $\left.)\left(\mathrm{L}^{3}-\kappa S\right)_{2}\right]$ is only formed in a ca 9% overall yield (highlighted ${ }^{1} \mathrm{H}$ NMR peaks). Repetition of such synthesis with higher ratios of $\mathrm{HL}^{3}:\left[\mathrm{Pt}(\mathrm{phen}) \mathrm{Cl}_{2}\right]$ of up to $4: 1$, did not result in significantly larger amounts of $\left[\operatorname{Pt}(\mathrm{phen})\left(\mathrm{L}^{3}-\kappa S\right)_{2}\right]$ being found upon work up of this relatively unstable product.

Fig. S6. Numbering scheme of selected atoms and groups of the molecular structure of $\left[\mathrm{Pt}(\mathrm{phen})\left(\mathrm{L}^{2}-\right.\right.$ $\kappa S)_{2}$]. Hydrogen atoms omitted for clarity, with the exception of a water molecule, H -bonded to the pendant $\mathrm{C}(\mathrm{O})$ group of the phenyl amide moiety of this complex.

Table S2. Selected bond lengths for $\left[\operatorname{Pt}(\mathrm{phen})\left(\mathrm{L}^{2}-\kappa S\right)_{2}\right]$.

Bonds:	\AA
Pt1-S1B	$2.280(2)$
Pt1-S2B	$2.280(2)$
Pt1-N5B	$2.060(6)$
Pt1-N6B	$2.050(6)$
Pt2-S1A	$2.279(2)$
Pt2-S2A	$2.284(2)$
Pt2-N5A	$2.057(6)$
Pt2-N6A	$2.063(6)$
S1B-C1B	$1.746(7)$
S2B-C13B	$1.751(8)$
S1A-C1A	$1.741(7)$
S2A-C13A	$1.748(7)$
O1B-C2B	$1.242(9)$
O2B-C14B	$1.233(10)$
O2A-C14A	$1.238(9)$
O1A-C2A	$1.242(9)$
N1B-C2B	$1.359(9)$
N1B-C1B	$1.320(9)$
N2B-C11B	$1.474(9)$
N2B-C1B	$1.349(9)$
N2B-C9B	$1.480(9)$
N3B-C13B	$1.343(10)$
N3B-C17	$1.511(12)$
N3B-C14	$1.472(12)$
N4B-C13B	$1.310(10)$
N2B-C14B	$1.349(11)$
N2A-C1A	
N5B-C32B	$1.365(9)$
N5B-C21B	$1.327(10)$
N6B-C31B	$1.369(9)$
N6B-C30B	$1.317(10)$
N1A-C1A	$1.320(9)$
	$1.333(9)$
N2A	$1.439(9)$

Table S2. Selected bond lengths for $\left[\operatorname{Pt}(\mathrm{phen})\left(\mathrm{L}^{2}-\kappa S\right)_{2}\right]$.

Bonds:	\AA
N3A-C13A	$1.356(9)$
N3A-C21A	$1.516(11)$
N3A-C23A	$1.493(9)$
N4A-C14A	$1.353(9)$
N4A-C13A	$1.318(9)$
N5A-C25A	$1.340(10)$
N5A-C36A	$1.348(9)$
N6A-C34A	$1.324(10)$
N6A-C35A	$1.381(9)$

Table S3. Selected hydrogen bond distanced in $\left[\operatorname{Pt}(\right.$ phen $\left.)\left(\mathrm{L}^{2}-\kappa S\right)_{2}\right]$

H-Bond		D...A (A)	D...A (${ }^{\circ}$)	Symm. Op
O4-HB... O1B	$1.88(6)$	$2.877(8)$	$170(5)$	$-\mathrm{x},-\mathrm{y},-\mathrm{z}$
O4-HA... O2A	$1.87(3)$	$2.837(7)$	$163(7)$	$1-\mathrm{x},-\mathrm{y},-\mathrm{z}$
O3-- H3A... O2B	$1.93(5)$	$2.914(8)$	$167(6)$	$1-\mathrm{x},-\mathrm{y},-\mathrm{z}$
O3-- H3B... O1A	$1.83(7)$	$2.812(8)$	$168(6)$	$1-\mathrm{x}, 1-\mathrm{y},-\mathrm{z}$

