Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Electronic Supplementary Information for

Free standing growth of MnCo₂O₄ nanoflakes as an electrocatalyst for

methanol electro-oxidation

Harsharaj S. Jadhav,¹ Animesh Roy,¹ Wook-Jin Chung, Jeong Gil Seo*

Department of Energy Science and Technology, Energy and Environment Fusion Technology Center, Myongji University, Nam-dong, Cheoin-gu, Yongin-si, Republic of Korea.

> 1. Authors contributed equally to this work *Corresponding author (E-mail: jgseo@mju.ac.kr,_Tel: +82-31-324-1338)

Figure S1: Photographs of (a) MnCo-hydroxide (b) $MnCo_2O_4$ grown on nickel foam.

Figure S2. EDX spectrum of the MnCo₂O₄ sample.

Fig. S3 CA curves of bare NF in 1M KOH with 0.5M methanol.

Fig. S4 (a-b) Low and high magnification FE-SEM images of $MnCo_2O_4$ electrode after 1000 cycles at scan rate of 10 mV s⁻¹.

Fig. S5 (a) EDS mapping carried out after long cycling for methanol oxidation.

The elemental analysis of $MnCo_2O_4$ electrode was carried out after long-term cycling as shown in **Figure S5**. The elemental analysis shows the presence of Oxygen (O), Potassium (K), Manganese (Mn), Cobalt (Co), Nickel (Ni) elements. The Mn, Co, O elements observed due to $MnCo_2O_4$ electro-catalyst material. Nickel (Ni) and Potassium (K) was detected due to nickel foam substrate and KOH used as electrolyte, respectively.

Fig. S6 XPS spectra of the $MnCo_2O_4$ sample: (a) full survey, (b) Mn 2p, (c) Co 2p and (d) O 1s taken after long term cycling for methanol electro-oxidation.

Figure S6 shows the XPS analysis of $MnCo_2O_4$ electro-catalyst after ling cycling. Full spectrum of $MnCo_2O_4$ shows the presence of Mn, Co and O elements. The deconvoluted spectra of Mn 2p shows the binding energies of 2p 3/2 and 2p 1/2 in $MnCo_2O_4$ are 642.2 and 653.9 eV, respectively. Similarly for Co the peaks observed at 780.6 and 795.6 eV observed corresponds to the 2p 3/2 and 2p 1/2, respectively. Furthermore, peaks at about 529.5(O1), 531.2(O2) and 532.5(O3) eV in the O 1s spectrum are ascribed to metal-oxygen bond, number of defects sites with low oxygen coordination and physisorbed or chemisorbed water, respectively.

This results reveals, no major change in binding energies of Mn, Co, and O elements after long –term cycling. In short, the $MnCo_2O_4$ spinel structure was maintained even after longterm cycling. **Table S1:** The performance of different spinel oxides used as electro-catalyst for methanol oxidation.

No.	Catalyst	Method	Electrolyte	Potential	Current	Scan	Stability	Ref
			(M)	window	density	rate		
				(V)		$(mV s^{-1})$		
1	MnCo ₂ O ₄	Co-precipitation	1M KOH	0-0.7	80	10	92% retention after 500	13
			+0.5M methanol		A g ⁻¹		cycles	
2	ZnCo ₂ O ₄	Hydrothermal	1M KOH	0-0.8	105	10	92% retention after 500	16
			+0.5M methanol		A g ⁻¹		cycles	
3	NiCo ₂ O ₄	Grinding	1M KOH		400		76% retention after 500	28
	/MWCNT	followed by	+6.0M methanol	0-0.8	mA cm ⁻²	100	cycles	
		calcination						
4	Co ₃ O ₄	Hydrothermal	1M KOH	0-0.75	140	25	100% retention after 500	29
	/NiO		+0.5M methanol		mA cm ⁻²		cycles	
5	NiCo ₂ O ₄	Electrodeposition	1M KOH	0-0.6	50	10	91% retention after 1000	30
			+0.5M methanol		A g ⁻¹		cycles	
6	CuCo ₂ O ₄	Hydrothermal	1M KOH	0-0.6	51	NA	NA	31
			+0.5M methanol		A g ⁻¹			
7	NiCo ₂ O ₄	Hydrothermal	0.1M KOH	0-0.8	0.035	50	79.3% retention after 500	32
	/rGO		+0.5M methanol		mA cm ⁻²		cycles	
8	NiCo ₂ O ₄	Hydrothermal	1M KOH	0-0.7	51	10	92% retention after 500	33
			+0.5M methanol		A g ⁻¹		cycles	
9	NiCo ₂ O ₄	Hydrothermal	1M KOH	0-0.6	134	10	88% retention after 500	34
			+0.5M methanol		mA cm ⁻²		cycles	
10	MnCo ₂ O ₄	Electrodeposition	1M KOH	0-0.5	96	10	90% retention after 1000	This
			+0.5M methanol		A g ⁻¹		cycles	work