Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Electronic Supporting Information

Microwave-assisted Synthesized of Novel Nanostructured Zn₃(OH)₂V₂O₇·2H₂O and Zn₂V₂O7 as Electrode Materials for Supercapacitors

Yingdi Li,ª Yifei Teng,ª Ziqing Zhang,ª Yi Feng,ª Peng Xueª, Wenming Tong,ª and Xiaoyang

Liu^{a*}

a State key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China. Tel/Fax: +86-0431-85168316. E-mail: liuxy@jlu.edu.cn

Fig. S1 TGA curve of the as-synthesized precursor $Zn_3(OH)_2V_2O_7 \cdot 2H_2O$.

Comment [$\square \square \square$]: Microwave-assisted synthesis of novel nanostructured Zn₃(OH)₂V₂O₇·2H₂O and Zn₂V₂O₇ as electrode materials for supercapacitors

Fig. S2 XRD patterns of the post-calcination products obtained at 500 °C and 600 °C.

Fig. S3 Statistical analysis of nanowire diameter of Zn₃(OH)₂V₂O₇·2H₂O.

Fig. S4 TEM (a and b) and HRTEM (inset b) images of $Zn_3(OH)_2V_2O_7 \cdot 2H_2O$.

Fig. S5 XRD patterns of (a) $Zn_3(OH)_2V_2O_7 \cdot 2H_2O$ and (b) $Zn_2V_2O_7$ with glycine concentration: 0, 0.05, 0.1 M.

Fig. S6 Cyclic Voltammetry (CV) curves of Zn₂V₂O₇ and nickel foam at 5 mV s⁻¹.

As shown in Fig. S7, we compared the typical cyclic voltammogram (CV) curves of the pure nickel foam and nickel foam with active materials $Zn_2V_2O_7$ at the same scan rate of 5 mV s⁻¹ in the potential window of 0 to 0.6 V. According to the CV curves, the capacitive current of the Ni foam was almost a straight line, while there was a strong pair of redox peaks in the CV curves of the $Zn_2V_2O_7$ electrode, which meant reversible Faraday redox reactions. The strong contrast between the CV curves of the pure nickel foam and the nickel foam with active materials $Zn_2V_2O_7$ had indeed indicated that the influence of the Ni foam can be neglected, and the specific capacitance was really from the nanowire shaped $Zn_2V_2O_7$ materials.

Fig. S7 Comparison of electrochemical properties of $Zn_3(OH)_2V_2O_7 \cdot 2H_2O$ nanowires: (a) CV curves at scan rates of 5, 10, 20, 40, 60, 80 mV s⁻¹. (b) CD curves at current densities of 1, 2, 4, 6, 8, 10 mA cm⁻².

Fig. S8. EIS curves of the $Zn_3(OH)_2V_2O_7 \cdot 2H_2O$ and $Zn_2V_2O_7$ electrodes in 6 M KOH solution (the inset shows the magnified electrochemical impedance spectrum).

Electrode materials	Specific capacitance	Energy density	Power density	Ref.
$Zn_2V_2O_7$	427.7 F g ⁻¹ (1 mA cm ⁻²)	18.7 W h kg ⁻¹	272.7 W kg ⁻¹	Our work
ZnO/carbon nanotube	48 F g ⁻¹ (1 mA cm ⁻²)	13.1 W h kg ⁻¹	792 W kg ⁻¹	46
PPy/GO/ZnO nanocomposite	94.6 F g ⁻¹ (1 A g ⁻¹)	10.65 W h kg ⁻¹	258.26 W kg ⁻¹	47
ZnCo ₂ O ₄ nanorod	10.9 F g ⁻¹ (30 mV s ⁻¹)	76 mW h kg ⁻¹	1.9 W kg ⁻¹	48

Table S1 The comparison results of electrochemical performance for the $Zn_2V_2O_7$ materials and other similar zinc compounds electrodes.