Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

ame] Page 1

Supporting information for

Synergistic Effect of Zn and Pd species in TiO2 towards Efficient Photo-Reduction of CO₂ into CH₄

Yanlong Yu,^a Zijian Lan,^a Limei Guo,^a Enjun Wang,^b Jianghong Yao, ^{a*} and Yaan Cao^{a*}

^a MOE Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education,

TEDA Applied Physics Institute and School of Physics, Nankai University, Tianjin 300457, China

^b Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China

Figure S1. amount of CO generation for TiO₂, TiO₂-Pd, TiO₂-Zn and TiO₂-Pd1.5%-Zn5%(a), TiO₂-Pd1.5%-Znx%(b) and TiO₂-Pdy-Zn5%(c) under Xe lamp irradiation after 8 h.

		specific photocatalytic
Sample	CO generation amount (10-6mol)	activity ^b (10-6mol·g-1·h-
		1)
blank ^a	0.31±0.01	-
TiO2(P25)	0.36±0.02	0.30±0.02
TiO2	0.35±0.03	0.29±0.02
TiO2-Zn	0.85±0.02	0.71±0.02
TiO2-Pd	3.77±0.47	3.14±0.39
TiO2-Pd1.5%-Zn3%	6.48±0.27	5.40±0.23
TiO2-Pd1.5%-Zn5%	7.99±0.28	6.66±0.23
TiO2-Pd1.5%-Zn7%	3.60±0.35	3.00±0.29
TiO2-Pd5%-Zn5%	7.14±0.45	5.95±0.38
TiO2-Pd7%-Zn5%	5.44±0.73	4.53±0.61

Table S1. Photocatalytic activity of pure TiO_2 , TiO_2 -Zn, TiO_2 -Pd and TiO_2 -PdX-ZnY samples under Xe lamp irradiation after 8 h.

^aBlank is the photolysis of CO₂; ^bspecific photocatalytic activity of CO, CO generation amount per unit mass catalyst per hour

Figure S2. Raman spectra of TiO₂, TiO₂-Zn, TiO₂-Pd and TiO₂-PdX-ZnY.

X-Ray diffraction (XRD) patterns were acquired on a Rigaku D/max 2500 X-ray diffraction spectrometer (Cu Ka, λ =1.54056 Å) at a scan rate of 0.02° 20 s⁻¹. The average crystal size was calculated using the Scherrer equation (D=k λ /Bcos θ).

Figure S3 XRD patterns of pure TiO_2 (curve a), TiO_2 -Pd, TiO_2 -Zn and TiO_2 -PdX-ZnY(X=1.5%~3%; Y=3%~7%) samples. Inset shows the enlargement of (101) plane.

Samples	Lattice p	Lattice parameter (Å)		crystal size	S _{BET} (m ² g ⁻	Phase Composition
	а	c	(Å ³)	(nm)	1)	
TiO ₂		9.5118	136.32	12.4	57	anatase
TiO ₂ -Pd1.5%	$\begin{array}{cccc} & & & 3.7857 \\ TiO_2-Pd1.5\% & & & 3.7842 \\ TiO_2-Zn5\% & & & 3.7876 \\ TiO_2-Pd1.5\% & & & 3.7851 \\ Zn5\% & & & & \end{array}$	9.5042	136.10	9.6	75	anatase
TiO ₂ -Zn5%		9.4963	136.23	8.9	63	anatase
TiO ₂ -Pd1.5%- Zn5%		9.4875	135.93	7.7	79	anatase

Table S2 Lattice parameters, cell volume, crystal size and specific surface areas of the TiO_2 , TiO_2 -Pd, TiO_2 -PdX-ZnY samples

Table S3 Atom percentage Ti, Zn, Pd , Cl and C of the TiO_2, TiO_2-Pd, TiO_2-Zn and TiO_2-Pd-Zn samples

sumptes					
Samples	Ti	Zn	Pd	Cl	С
TiO ₂	28.36			2.01	19.19
TiO ₂ -Pd1.5%	18.82		0.63	2.36	19.88
TiO ₂ -Zn5%	18.05	3.74		6.49	15.18
TiO ₂ -Pd1.5%-Zn5%	13.25	3.37	0.91	5.25	15.34

DFT Calculation

The calculations were carried out by a first-principle calculation software package CASTEP. Generalized gradient approximation (GGA) based density-functional theory (DFT) was used to calculate the electronic band structure and density of states (DOS) for pure TiO₂, TiO₂-Zn and TiO₂-Pd, respectively. An anatase TiO₂ model of 76 atoms with exposed (101) facet is created. The vacuum lamb is set as 10 Ai. For TiO₂-Pd, one Pd ion is linked with two surface bridge O ions on the (101) facet. For TiO₂-Zn, one Zn ion is linked with one surface bridge O ion on the (101) surface of anatase and one Cl ion. The valence electronic configurations for O, Ti, Cl, Zn and Pd atoms were $2s^22p^4$, $3s^23p^63d^24s^2$, $3s^23p^5$, $3d^{10}4s^2$ and $4d^{10}$, respectively. The plane wave energy cutoffs were taken to be 420 eV. In all the cases, geometry optimizations were carried out first, and convergence was assumed when the forces on atoms were less than 50 meV/Å. Compared with experimental results, the theoretical calculation usually results in an underestimated band gap, caused by the shortcoming of the exchange-correction functional in describing the excited states[23, 24].

Figure S4. Theoretical calculated band structure and Projected density of states (PDOS) for the TiO₂, TiO₂-Zn and TiO₂-Pd.

of <72 characters]

Figure S5. Absorption spectra of TiO₂, TiO₂-Zn, TiO₂-Pd and TiO₂-PdX-ZnY.

Figure S6. The time-resolved PL decay curve of the pure TiO_2 , TiO_2 -Zn, TiO_2 -Pd and TiO_2 -Pd-Zn samples

Figure S7. Blank experiment test (UV-illuminated of CO2 + H2O without the photocatalyst, without of UV-illuminated only CO2 + H2O with the photocatalyst in the dark, UV-illuminated photocatalyst in H2O without the CO2)

Figure S8. EDS of TiO₂-Pd-Zn

Figure S9. The HR-TEM of the pure TiO_2 , TiO_2 -Zn, TiO_2 -Pd and TiO_2 -Pd-Zn samples

Figure S10. Nitrogen adsorption-desorption isotherm of TiO_2 and TiO_2 -Pd-Zn.