Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

## **Supporting information**

## Highly Stable and Conductive PEDOT:PSS/Graphene Nanocomposites for

## **Biosensor Application in Aqueous Medium**

Dongtao Liu<sup>1, ⊥</sup>, Md. Mahbubur Rahman<sup>2, ⊥</sup>, Chuangye Ge<sup>1</sup>, Jaecheon Kim<sup>1</sup>, Jae-Joon Lee<sup>1,\*</sup>

<sup>1</sup>Department of Energy & Materials Engineering, Dongguk University, Seoul, 100-715, Korea <sup>2</sup>Nanotechnology Research Center and Department of Applied Life Science, College of Biomedical and Health Science, Konkuk University, Chungju 380-701, Korea

<sup>⊥</sup>Both the authors contributed equally

\* Author to whom correspondence should be addressed; E-mail: jjlee@dongguk.edu.

Tel.: 82-2-2260-8513.



Figure S1: Schematic illustration of the fabrication of PPG<sub>AT</sub> onto FTO coated glass substrate.



**Figure S2**: Optical microscopic images (Magnification: ×100) of (a)  $GNP_{UT}$ , (b)  $GNP_{WT}$ , (c)  $PPG_{UT}$ , (d)  $PPG_{UT-WT}$ , (e)  $PPG_{AT}$ , and (f)  $PPG_{AT-WT}$ .



Figure S3: SEM images of (a)  $PP_{UT}$ , (b)  $PP_{UT-WT}$ , (c)  $PP_{AT}$ , and (d)  $PP_{AT-WT}$ .



Figure S4: Survey XPS spectra of different samples.



**Figure S5**: Core-level S 2p peaks of (a)  $PP_{UT}$  and (b)  $PP_{AT}$  and O 1s peaks of (c)  $PP_{UT}$  and (d)  $PP_{AT}$  electrode. The dotted lines indicate the experimental data and the solid lines denote the fitted curves.



Figure S6: Survey XPS spectra of  $PP_{UT}$  and  $PP_{AT}$  electrodes.



Figure S7: CVs of  $GNP_{UT}/FTO$ ,  $PP_{UT}/FTO$ , and  $PP_{AT}/FTO$  electrodes in PBS (pH 7.0) containing  $[Fe(CN)_6]^{3-/4-}$  (5 mM each) at a scan rate of 100 mV/s.



Figure S8: Raman spectra of GNPs before and after ball milling.



**Figure S9**: Consecutive CVs (scan rate 100mV/s) (10<sup>th</sup> - 90<sup>th</sup>) of (a) PPG<sub>UT</sub>/FTO and (b) PPG<sub>AT</sub>/FTO electrodes and repetitively measured EIS plots of (c) PPG<sub>UT</sub>/FTO and (d) PPG<sub>AT</sub>/FTO electrodes in PBS (pH 7.0) containing  $[Fe(CN)_6]^{3-/4-}$  (5 mM each). Each of the EIS plot was measured after performing 10 consecutive CV sweeping in the potential range between -0.3 to +0.7 V at a scan rate 100 mV/s.



**Figure S10**: CVs of  $PPG_{UT}/FTO$  and  $PPG_{AT}/FTO$  electrodes in PBS (pH 7.0) containing (a) 1 mM AA, (b) 1 mM DA, and (c) 1 mM UA at a scan rate 100 mV/s.



**Figure S11**: CVs of 1 mM DA (in PBS, pH 7.0) at PPG<sub>AT</sub>/FTO with varying scan rates (a→h: 25, 50, 75, 100, 125, 150, 200, 300 mV/s).



**Figure S12**: (a) Consecutive CVs of 1 mM DA (in PBS, pH 7.0) at the PPG<sub>AT</sub>/FTO sensor at a scan rate of 100 mV/s. (b) DPV responses of three different  $PPG_{AT}/FTO$  sensor in a mixture solution of AA (2 mM), DA (30  $\mu$ M), and UA (30  $\mu$ M).



**Figure S13:** DPV responses of DA and UA (30  $\mu$ M each) at PPG<sub>AT</sub>/FTO sensor in the absence and presence of AA (2 mM), glucose (1 mM), NaNO<sub>3</sub> (1 mM) and CA (1 mM).

**Table S1**: Comparison of the sensing performance of  $PPG_{AT}/FTO$  sensor for DA detection withsome reported nanocomposites based sensors.

| Electrode                                               | Method                        | Linearity   |       | Detection        | Ref.  |           |
|---------------------------------------------------------|-------------------------------|-------------|-------|------------------|-------|-----------|
|                                                         |                               | (µM)        |       | limit(µM)        |       |           |
| Electrochemistry based sensor                           |                               |             |       |                  |       |           |
| <sup>a</sup> SPGNE                                      | DPV                           | 0.5~2000 0. |       | 0.12             |       | [S1]      |
| <sup>b</sup> GO-BAMB-Co(OH) <sub>2</sub> /GCE           | DPV                           | 3~100       |       | 0.4              |       | [S2]      |
| ° AGONF                                                 | CV                            | 2~30        |       | ° 2.2            |       | [S3]      |
| <sup>d</sup> TGONF                                      |                               |             |       | <sup>d</sup> 2.5 |       |           |
| <sup>e</sup> GLY-GQDs-Ce (IV)                           | DPV                           | 0.03~16.7   |       | 0.025            |       | [S4]      |
| f rGO-Co <sub>3</sub> O <sub>4</sub> /GCE               | CA                            | 0~30        |       | 0.389            |       | [S5]      |
| <sup>g</sup> GR/p-AHNSA/SPCs                            | SWV                           | 0.05~150    |       | 0.003            |       | [S6]      |
| <sup>h</sup> PA/GO/GCE                                  | DPV                           | 0.05~10     |       | 0.016            |       | [S7]      |
| <sup>i</sup> CdTe QDs-Gr/GCE                            | DPV 1~500                     |             |       | 0.33             | [S8]  |           |
| Tyrosinase/NiO/ITO                                      | CV                            | 2~100       |       | 1.04             |       | [S9]      |
| Graphene nanobelts/GCE                                  | DPV                           | 2~200       |       | 0.58             |       | [S10]     |
| GO-                                                     | CA                            | 0.5~2500    |       | 0.17             |       | [S11]     |
| MWCNT/MnO <sub>2</sub> /AuNP/GCE                        |                               |             |       |                  |       |           |
| Nitrogen doping graphene/GCE                            | E DPV                         | 0.5~170     |       | 0.25             | [S12] |           |
| <sup>j</sup> P(TBA <sub>0.50</sub> Th <sub>0.50</sub> ) | EIS                           | 7.8~125     |       | 0.3              | [S13] |           |
| rGO/CPE                                                 | CPE DPV 2.0~2×10 <sup>4</sup> |             | )4    | 0.136            | [S14] |           |
| Poly(thionine)/GCE                                      | DPV                           | 5~30        |       | 0.7              | [S15] |           |
| Graphene/Au/GCE                                         | DPV                           | 5~1000      |       | 1.86             |       | [S16]     |
| Fe <sub>3</sub> O <sub>4</sub> /rGO/GCE                 | DPV                           | 0.5~100     |       | 0.12             |       | [S17]     |
| Acid treated GPP/FTO                                    | DPV                           | 1~30        |       | 0.105            | ]     | This work |
| Other technologies based sensor                         |                               |             |       |                  |       |           |
| - UV                                                    | absorbance                    | 0.05~6.00   | µg/mL | 0.045            | µg/mL | [S18]     |
| - Capillary                                             | Electrophoresis               | 0.001~0.3   | μΜ    | 0.10             | nM    | [S19]     |
| - Chem                                                  | - Chemiluminescence           |             | nM    | 0.03             | nM    | [S20]     |
| - <sup>k</sup> L                                        | - <sup>k</sup> LC-MS-MS       |             | μg/L  | 2.5              | μg/L  | [S21]     |
| -                                                       | <sup>1</sup> LacOF            |             | pg/mL | 2.1              | pg/mL | [S22]     |
| - m ]                                                   | <sup>m</sup> HPLC-FD          |             | µg/mL | 0.031            | μg/mL | [823]     |
| - <sup>n</sup> I                                        | - <sup>n</sup> HPLC-ED        |             | pg/mL | 5.2              | pg/mL | [S22]     |
| - FI                                                    | - Fluorescent                 |             | μΜ    | 40               | nM    | [S24]     |
| - Neuroc                                                | - Neurochemical Probe         |             | μΜ    | -                | -     | [825]     |
| - ° GQI                                                 | ° GQD-Fluorescent             |             | μΜ    | 0.0025           | μΜ    | [S26]     |

<sup>a</sup>Screen printing graphene electrode; <sup>b</sup>1,4-bis(aminomethyl)benzene (BAMB) and cobalt hydroxide (Co(OH)<sub>2</sub>) at graphene oxide (GO); <sup>c</sup>Alanine functionalized GO nanoflakes; <sup>d</sup>Tyrosine functionalized GO nanoflakes; <sup>e</sup>Photoluminescent glycine functionalized graphene quantum dots; <sup>f</sup>Cobalt oxide nanograindecorated reduced graphene oxide; <sup>g</sup>Graphene (GR) and poly 4-amino-3-hydroxy-1-naphthalenesulfonic acid modified screen printed carbon sensor; <sup>h</sup>Phytic acid/graphene oxide; <sup>i</sup>Quantum dots CdTe and graphene; <sup>j</sup>Polymerization of 3-Thienylboronic acid and copolymer Thiophene; <sup>k</sup> Liquid chromatography-mass spectrometry- mass spectrometry; <sup>1</sup> Laccase-Optical fiber biosensor; <sup>m</sup> High Performance Liquid Chromatography with fluorimetric detection; <sup>n</sup> High Performance Liquid Chromatography with electrochemical detection.<sup>o</sup> graphene quantum dot-Fluorescent.

## Reference

- S1. J. Ping, J. Wu, Y. Wang and Y. Ying, Biosens. Bioelectron., 2012, 34, 70-76.
- S2. A. Ejaz, Y. Joo and S. Jeon, Sens Actuators B Chem., 2017, 240, 297-307.
- S3. M. Kumar, B. E. K. Swamy, M. H. M. Asif and C. C. Viswanath, Appl. Surf. Sci., 2017, 399,

411-419.

- S4. R. Liu, R. Yang, C. Qu, H. Mao, Y. Hu, J. Li and L. Qu, Sens Actuators B Chem., 2017, 241, 644-651.
- S5. A. Numan, M. M. Shahid, F. S. Omar, K. Ramesh and S. Ramesh, *Sens Actuators B Chem.*, 2017, **238**, 1043-1051.
- S6. M. Raj, P. Gupta, R. N. Goyal and Y.-B. Shim, *Sens Actuators B Chem.*, 2017, 239, 993-1002.
- S7. D. Wang, F. Xu, J. Hu and M. Lin, *Mater Sci Eng C Mater Biol Appl.*, 2017, 71, 1086-1089.
- S8. H. W. Yu, J. H. Jiang, Z. Zhang, G. C. Wan, Z. Y. Liu, D. Chang and H. Z. Pan, Anal. Biochem., 2017, 519, 92-99.
- S9. A. Roychoudhury, S. Basu and S. K. Jha, Biosens. Bioelectron., 2016, 84, 72-81.
- S10. P. K. Kannan, S. A. Moshkalev and C. S. Rout, Nanotechnology, 2016, 27, 075504.
- S11. D. Rao, X. Zhang, Q. Sheng and J. Zheng, Microchim. Acta., 2016, 183, 2597-2604.

S12. Z. H. Sheng, X. Q. Zheng, J. Y. Xu, W. J. Bao, F. B. Wang and X. H. Xia, *Biosens. Bioelectron.*, 2012, **34**, 125-131.

- S13. M. Dervisevic, M. Senel and E. Cevik *Mater Sci Eng C Mater Biol Appl.*, 2017, 72, 641-649.
- S14. A. Benvidi, S. Dalirnasab, S. Jahanbani, M. D. Tezerjani, M. M. Ardakani, B.-B. F.Mirjalili and R. Zare, *Electroanalysis*, 2016, 28, 1625-1633.
- S15. A.J.S. Ahammad, X.B. Li, M.M. Rahman, K.-M. Noh, J.-J. Lee, *Int. J. Electrochem. Sci.*, 2013, 8, 7806-7815.
- S16. J. Li, J. Yang, Z. Yang, Y. Li, S. Yu, Q. Xu and X. Hu, Anal Methods., 2012, 4, 1725-1728.
- S17. T. Peik-See, A. Pandikumar, H. Nay-Ming, L. Hong-Ngee and Y. Sulaiman, *Sensors*, 2014, 14, 15227-15243.
- S18. L. Guo, Y. Zhang, Q. Li, Anal Sci, 2009, 25, 1451-1455.
- S19. H. Li, C. Li, Z.Y. Yan, J. Yang, H. Chen, J. Neurosci. Methods, 2010, 189, 162-168.
- S20. X. Xu, H. Shi, L. Ma, W. Kang, S. Li, Luminescence, 2011, 26, 93-100.
- S21. A. El-Beqqali, A. Kussak, M. Abdel-Rehim, J. Sep. Sci, 2007, 30, 421-424.
- S22. L.I. Silva, F.D. Ferreira, A.C. Freitas, T.A. Rocha-Santos, A.C. Duarte, *Talanta*, 2009, 80, 853-857.
- S23. G.E. De Benedetto, D. Fico, A. Pennetta, C. Malitesta, G. Nicolardi, D.D. Lofrumento, F. De Nuccio, V. La Pesa, *J. Pharm. Biomed. Anal*, 2014, 98, 266-270.
- S34. A. Yildirim, M. Bayindir, Anal. Chem, 2014, 86, 5508-5512.
- S25. H.N. Schwerdt, M.J. Kim, S. Amemori, D. Homma, T. Yoshida, H. Shimazu, H.
  Yerramreddy, E. Karasan, R. Langer, A.M. Graybiel, M.J. Cima, *Lab Chip*, 2017, 17, 1104-1115.
  S26. X. Zhou, X. Gao, F. Song, C. Wang, F. Chu, S. Wu, *Appl. Surf. Sci*, 2017, 423, 810-816.