First synthesis of pyrene functionalized silatranes for mechanistic insight into their potential antiparasitic and anti-oxidation activities

SUPPORTING INFORMATION

Gurjaspreet Singh^{a, *}, Akshpreet Singh^a, Jasbhinder Singh^a, Darpandeep Aulakh^b, Mario Wriedt^{b*}, Cristóbal Espinosa Ruiz^c, M. Angeles Esteban^{c*}, Rakesh Sehgal^d, Kapil Goyal^d, Shweta Sinha^d

^aDepartment of Chemistry and Centre of Advanced Studies, Panjab University, Chandigarh, 160014, India

^bFunctional Materials Design & X-ray Diffraction Lab, Department of Chemistry & Biomolecular Science, Clarkson University, Box 5810, Potsdam, NY 13699, USA

^c Department of Cell Biology & Histology, Faculty of Biology. University of Murcia, 30100 Murcia, Spain.

^dDepartment of Medical Parasitology, PGIMER, Chandigarh-160012, India

Table of contents

1.	Crystallographic detail of compound 6	S2
2.	Cyclic voltammogram of 6	S3
3.	IR spectrum of 3	S3
4.	¹ H NMR spectrum of 3	S4
5.	IR spectrum of 6	S4
6.	¹ H NMR spectrum of 6	S5
7.	¹³ C NMR spectrum of 6	S5
8.	Mass spectrum of 6	S6
9.	TGA curve of 6	S6

10. IR spectrum of 7	S7
S1	
11. ¹ H NMR spectrum of 7	S 7
12. ¹³ C NMR spectrum of 7	S 8
13. Mass spectrum of 7	S 8
14. TGA curve of 7	S9
15. Global reactivity descriptors for 6 and 7	S9

Table S1. Crystallographic detail of compound 6

Compound	6
Formula	C ₅₂ H ₅₅ N ₄ O ₆ Si ₂
MW [g·mol ⁻¹]	888.18
Crystal system	Orthorhombic
Space group	$Pna2_1$
<i>a</i> [Å]	27.649(3)
<i>b</i> [Å]	7.2495(9)
<i>c</i> [Å]	21.908(2)
α [deg]	90
β [deg]	90
γ [deg]	90
<i>V</i> [Å ³]	4391.1(8)
<i>T</i> [K]	170(2)
Ζ	4
$\rho_{\rm calc} [{\rm g} \cdot {\rm cm}^{-3}]$	1.343
μ [mm ⁻¹]	0.139
Min/max transmission	0.987/0.989
$\theta_{\rm max}$ [deg]	28.308
Measured reflections	33568
Unique reflections	10819
Reflections $[F_0 > 4\sigma(F_0)]$	3563
Parameter	578
R _{int}	0.1299
$R_1 [F_0 > 4\sigma(F_0)]$	0.0500

wR_2 [all data]	0.0959
GOF	0.748
$\Delta \rho_{max} / \Delta \rho_{min} \left[e \cdot \text{\AA}^{-3} \right]$	0.365/-0.296
CCDC number	1555883

Figure S1. Cyclic voltammogram of 6 using 1mM of analyte in DCM and 0.1mM Bu₄NPF₆ with a scan rate of 50 mV s⁻¹

Figure S2. IR spectrum of 3

Figure S3. ¹H NMR spectrum of 3

Figure S4. IR spectrum of 6

Figure S6. ¹³C NMR spectrum of 6

Figure S8. TGA curve of 6

S5

Figure S12. Mass spectrum of 7

Figure S13. TGA curve of 7

Table S2. Global reactivity descriptors for 6 and 7 calculated at the B3LYP/6-31+G(d) level of theory.

Molecule	Ionization potential, IP (eV)	Electron affinity, EA (eV)	Electroneg ativity, χ(eV)	Chemical potential, µ (eV)	Chemical hardness, η (eV)	Chemical softness, s (eV)	Dipole Moment (Debye)
6	5.462	2.048	3.755	-3.755	1.707	0.854	4.034
7	5.446	2.029	3.738	-3.738	1.708	0.854	4.257