Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Supporting Information

Polyol asserted hydrothermal synthesis of SnO₂ nanoparticles for fast adsorption and photocatalytic degradation of methylene blue cationic dye

Barkha Rani, Sathyanarayanan Punniyakoti, Niroj Kumar Sahu*

Centre for Nanotechnology Research, VIT University, Vellore-632014, TamilNadu, India Emails: <u>barkha.rani2015@vit.ac.in</u>, <u>nirojs@vit.ac.in</u> *Corresponding author

Table S1 Intensity ratio of (101) and (110) planes in the XRD patterns of polyol functionalised SnO₂ NPs.

Samples	I ₁₁₀	I ₁₀₁	I ₁₀₁ / I ₁₁₀
Sn-EG	1087.4	876.60	0.8055
Sn-DEG	2486.8	2001.9	0.8050
Sn-TEG	2147.8	1668.9	0.7770
Sn-PEG4	856.71	720.30	0.8407
Sn-PEG6	916.66	866.50	0.9452

Fig. S1 Williamson-Hall (W-H) plots for different $SnO_2 NPs$.

Table S2	Comparative	crystallite	sizes	calculated	using	Debye-Sch	nerrer	formula	and	Williamson	-Hall
equation.											

Samples	XRD size	Williamson- Hall size	Strain factor	Type of strain
Sn-EG	2.239	2.00	-0.2035	compressive
Sn-DEG	2.370	2.06	-0.2169	compressive
Sn-TEG	2.459	2.21	-0.1747	compressive
Sn-PEG4	3.289	3.10	-0.0726	compressive
Sn-PEG6	3.578	3.44	-0.0209	compressive

Fig. S2 HRTEM images of different SnO_2 NPs.

Fig. S3 SAED patterns of (a) Sn-EG, (b) Sn-DEG, (c) Sn-TEG, (d) Sn-PEG4 and (e) Sn-PEG6.

Fig. S4 EDX spectra of different polyol functionalised SnO_2 NPs.

Table S3 atomic % and weight % of oxygen and tin in prepared SnO_2 NPs.					
Samples name	Weight %	Atomic			

Samples name	Weight %		Atomic %	
	Sn	0	Sn	0
Theoretical value	78.768	21.232		
Sn-EG	61.57	38.43	17.76	82.24
Sn-DEG	58.49	41.51	15.96	84.04
Sn-TEG	52.80	47.20	13.10	86.90
Sn-PEG4	75.38	24.62	29.22	70.78
Sn-PEG6	73.40	26.60	27.11	72.89

Fig. S5 Plot of weight loss profile of different SnO_2 NPs with respect to heating temperature.

Fig. S6 Zeta potential of polyol functionalised SnO_2 NPs at different pH value of the dispersion.

Sample Name	Surface area (m²/g)	Pore size (nm)	Pore volume (cc/g)
Sn-EG	219.160	Diameter = 3.053 nm	0.012
Sn-DEG	110.160	Diameter = 4.042 nm	0.139
Sn-TEG	133.311	Diameter = 3.119 nm	0.174
Sn-PEG4	86.509	Diameter = 4.023 nm	0.152
Sn-PEG6	101.188	Diameter = 6.630 nm	0.197

Table S4 Surface area, pore size and pore volume of SnO_2 nanoparticles.

Fig. S7 UV-Vis absorption spectra of MB dye after different time of UV light (λ = 254 nm) irradiation in presence of bare SnO₂ catalyst.

Table S5 Dye degradation efficiency of bare SnO2 nanocatalyst towards MB dye after different time of UV light (λ = 254 nm) irradiation.

UV irradiation Time	Dye degradation	
	Efficiency (Bare)	
0 min	11.1 %	
10 min	58.2 %	
20 min	74.74 %	
30 min	86.45 %	
40 min	89.51 %	
50 min	92.77 %	
60 min	96.4 %	

The linear relation for Langmuir isotherm is

$$\frac{C_e}{q} = \frac{1}{b q_m} + \frac{C_e}{q_m}$$

Where C_e is equilibrium concentration of dye, q is adsorption capacity, b is Langmuir adsorption constant and q_m is maximum monolayer adsorption capacity.

The different values of R_I define the several types of isothermic conditions such as linear ($R_I = 1$), favourable ($0 < R_I < 1$), unfavourable ($R_I > 1$) and irreversible ($R_I = 0$). The equation for R_I defined as

$$R_l = \frac{1}{b \ C_m}$$

Where C_m is the maximum concentration of dye used for isotherm study.

The other model is Fraundlich isotherm and expressed as

$$\log q = \log K + \frac{1}{n} \log C_e$$

Where K is the capacity and n is adsorption intensity of dye on catalyst surface.

Temkin relation is used for the study of adsorption energy and the adsorption process to decide whether it is endothermic or exothermic. The linear form of Temkin relation expressed as

$$q = \beta \ln \alpha + \beta \ln C_e$$

β value is calculated from equation

$$\beta = \frac{RT}{s}$$

Where α is equilibrium constant, T is temperature, R is universal gas constant and s is temkin constant corresponds to heat sorption (J mg⁻¹).

Dubinin model is used for the estimation of free energy and calculated by its linear equation

$$\ln q = \ln Q_m - B \varepsilon^2$$

$$\varepsilon = RT \ln \left(1 + \frac{1}{C_e}\right)$$

Where B = adsorption energy constant, Q_m is theoretical saturation capacity.

The mean free energy calculated by

$$E = \frac{1}{\sqrt{2B}}$$

Fig. S8 Isotherm plots for adsorption of MB on SnO₂ surface; (a) Langmuir isotherm, (b) Freundlich isotherm, (c) Temkin isotherm, (d) Dubinin isotherm.

Model	Parameters	Values
Langmuir	q _m (mg/g)	14.689
	b (L/mg)	3.672
	Ri	0.0358
	R ²	0.9782
Freundlich	K [(mg/g)(1/mg) ^(1/n)]	10.825
	n	3.290
	R ²	0.8416
Temkin	α (L/g)	15.785
	β	2.976
	S	838.054
	R ²	0.8068
Dubinin	В	4.01 E-08
	Q _m	13.236
	E (J/mole)	3529.033
	R ²	0.81257

Table S6 Adsorption isotherms parameters of MB dye on SnO_2 NPs.

Fig. S9 FTIR spectra of Sn-EG NPs before and after dye degradation experiment.

Heber Photoreactor

The multi-lamp photoreactor consists of 16 mercury lamps (8 watt each) arranged in a circular manner. The 16 lamps are divided into two sets with each set having 8 lamps emitting a fixed wavelength of either 254 nm or 365nm. The power density of 365 nm and 254 nm with eight UV lamps are 2650 μ W/cm² and 1592 μ W/cm² respectively. The lamp to sample distance is 35 – 40 mm. A schematic of the reaction chamber is given below.

Fig. S10 Schematic of the photocatalytic reaction chamber.