Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Supplementary Materials

Table S1. Selected geometrical parameters and other properties of the global minimum structure, SKF86002**B**, compared with conformers SKF86002**A**, SKF86002**C** and SKF86002**D***

Parameters	SKF86002B	SKF86002A	SKF86002C	SKF86002D
		(Δ)	(Δ)	(Δ)
R1 ^a	8.382	8.383 (-0.001)	8.412 (-0.030)	8.373 (+0.009)
R2a ª	6.856	6.852 (+0.004)	7.007 (-0.151)	6.78 (+0.076)
R2b ^a	7.987	7.985 (+0.002)	7.959 (+0.028)	7.896 (+0.091)
R3 ^a	8.283	8.283 (0.000)	8.341 (-0.058)	8.256 (+0.027)
Bond length (Å)				
$C_{(21)}$ - $F_{(2)}$	1.361	1.361 (0.000)	1.349 (+0.012)	1.34 (+0.021)
$C_{(10)}$ - $C_{(12)}$	1.474	1.474 (0.000)	1.512 (-0.038)	1.43 (+0.044)
$C_{(8)}$ - $N_{(4)}$	1.308	1.309 (-0.001)	1.336 (-0.028)	1.31 (-0.002)
$C_{(8)}$ - $N_{(3)}$	1.366	1.362 (+0.004)	1.402 (-0.036)	1.36 (+0.006)
$C_{(8)}$ - $S_{(1)}$	1.765	1.766 (-0.001)	1.730 (+0.035)	1.72 (+0.045)
$C_{(9)}$ - $S_{(1)}$	1.856	1.857 (-0.001)	1.791 (+0.065)	1.84 (+0.016)
$C_{(7)}$ - $C_{(11)}$	1.468	1.468 (0.000)	1.491 (-0.023)	1.44 (+0.028)
C ₍₂₀₎ -N ₍₅₎	1.342	1.342 (0.000)	1.361 (-0.019)	1.35 (-0.008)
C ₍₁₉₎ -N ₍₅₎	1.340	1.339 (+0.001)	1.355 (-0.015)	1.35 (-0.010)
$C_{(10)}$ - $C_{(7)}$	1.395	1.397 (-0.002)	1.431 (-0.036)	1.39 (+0.005)
N ₍₃₎ -C ₍₆₎	1.460	1.458 (+0.002)	1.491 (-0.031)	1.45 (+0.01)
Bond angle (°)				
$C_{(8)}$ - $S_{(1)}$ - $C_{(9)}$	88.94	88.63 (+0.31)	93.74 (-4.80)	91.72 (-2.78)
N ₍₃₎ -C ₍₆₎ -C ₍₉₎	104.33	104.67 (-0.34)	109.66 (-5.33)	106.45 (-2.12)
$C_{(10)}$ - $N_{(4)}$ - $C_{(8)}$	104.86	104.92 (-0.06)	106.54 (-1.68)	103.06 (+1.80)
$C_{(7)}$ - $N_{(3)}$ - $C_{(6)}$	134.44	136.21 (-1.77)	141.45 (-7.01)	133.45 (+0.99)
$N_{(4)}$ - $C_{(8)}$ - $S_{(1)}$	132.86	133.4 (-0.54)	132.42 (+0.44)	134.40 (-1.54)
<u>Dihedral angle (°)</u>				
$C_{(14)}$ - $C_{(11)}$ - $C_{(7)}$ - $C_{(10)}$	-47.90	42.63 (-90.53)	-52.78 (+4.88)	-90.15 (+42.25)
$C_{(16)}$ - $C_{(12)}$ - $C_{(10)}$ - $N_{(4)}$	148.12	30.35 (+117.77)	164.89 (-16.77)	90.34 (+57.78)
$N_{(3)}-C_{(8)}-S_{(1)}-C_{(9)}$	9.99	15.1 (-5.11)	-1.70 (+11.69)	10.16 (-0.17)
$C_{(10)}$ - $N_{(4)}$ - $C_{(8)}$ - $N_{(3)}$	1.66	0.32 (+1.34)	-0.19 (+1.85)	-0.17 (+1.83)

$C_{(8)}$ - $S_{(1)}$ - $C_{(9)}$ - $C_{(6)}$	-25.42	-26.8 (+1.38)	2.84 (-28.26)	-18.56 (-6.86)
$N_{(3)}$ - $C_{(6)}$ - $C_{(9)}$ - $S_{(1)}$	33.75	31.44 (+2.31)	-3.28 (+37.03)	21.85 (+11.90)
N ₍₄₎ -C ₍₈₎ -S ₍₁₎ -C ₍₉₎			178.43	
	-175.55	-166.14 (-9.41)	(-353.98)	-169.42 (-6.13)
$C_{(11)}$ - $C_{(7)}$ - $N_{(3)}$ - $C_{(6)}$	-19.65	-8.51 (-11.14)	-0.39 (-19.26)	-1.94 (-17.71)
$C_{(12)}$ - $C_{(10)}$ - $C_{(7)}$ - $C_{(11)}$	-4.85	6.53 (-11.38)	1.95 (-6.80)	-0.19 (-4.66)
<r<sup>2> (a.u.)</r<sup>		7311.3428	7569.4695	6976.9344
	7310.6635	(-0.6793)	(-258.8060)	(+333.7291)
μ (D)	5.34	5.37 (-0.03)	5.92 (-0.58)	5.34 (0.00)
		-1279.2433	-1278.0769	-1278.082
$E\left(E_{\mathrm{h}}\right)$	-1279.243354	(-0.00008)	(-1.16645)	(-1.16132)
ZPE (kcal·mol ⁻¹)	157.14303	157 09623	155 64052	157.43193
		(+0.04680)	(+1.50251)	(-0.28890)
$E + ZPE (E_h)$	-1278.993197	-1278.9929	-1278.9761	-1278.9733
		(-0.00027)	(-0.01713)	(-0.01995)
HOMO-LUMO gap (eV)	0.17	0.16 (+0.01)	0.16 (+0.01)	0.18 (-0.01)
Rotational Const. A (GHz)	0.3550	0.3560		0.3771
		(-0.0010)	0.3451 (+0.0099)	(-0.0221)
B (GHz)	0.2098			0.2091
		0.2095 (+0.0003)	0.2029 (+0.0069)	(+0.0007)
C (GHz)	0.1374	0.1373		0.1486
		(+0.0001)	0.1318 (+0.0056)	(-0.0112)

* Using the B3LYP/6-31+G* level of theory.
a. Perimeters [17] of the fluorophenyl (R1), imidazolyl (R2a), thiophenyl (R2b) and pyridinyl (R3) aromatic rings, respectively.