Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Signalling probes appended with two rhodamine derivatives: Inter-component preferences, Fe(III)-ion selective fluorescence responses and bio-imaging in plant species

Debajani Mallick^{a,b}, Biswonath Biswal^a, M. Thirunavoukkarasu^c, Roshnara Mohanty^c, Bamaprasad Bag^{a,b,*}

^aColloids and Materials Chemistry Department, ^bAcademy of Scientific and Innovative Research, ^cEnvironment and Sustainability Department, CSIR-Institute of Minerals and Materials Technology, P.O.: R.R.L., Bhubaneswar-751 013, Odisha, India. Email: <u>bpbag@immt.res.in</u>

Supplementary Information

Fig. S1: Fluorescence spectral pattern of **1** in presence of Fe(III) ion in EtOH–H₂O (1:1 v/v, 0.1M PBS) medium on excitation at various wavelength. $[1] = 1\mu M$, $[Fe(III)] = 5 \mu M$, em. and ex. b.p. = 5 nm, RT.

Fig. S2: Photograph of change in colour of the solution of **1** in EtOH–H₂O (1:1 v/v, 0.1M PBS) medium on addition of various metal ions; added metal ions (from left to right: blank, Na(I), K(I), Ca(II), Mn(II), Fe(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Ag(I), Cd(II), Hg(II) and Pb(II).

Fig. S3: Fluorescence enhancement factor (I_{550}/I_0) of **1** in presence of various metal ions. [1] = 1µM, [M(I/II/III)] = 10 µM, λ_{ex} = 500 nm, em. and ex. b. p. = 5 nm, RT, EtOH.

Fig. S4: (a) Absorption enhancement factor ($\varepsilon/\varepsilon_0$) and (b) Fluorescence enhancement factor (I_{550}/I_0) of **2** in presence of various metal ions in EtOH-H₂O(1:1 v/v, 0.1M PBS) medium. Abs: [**2**] = 10µM, [M(I/II/III)] = 25 µM; Fluorescence: [**2**] = 1µM, [M(I/II/III)] = 5 µM; λ_{ex} = 500 nm, em. and ex. b. p. = 5 nm, RT.

Fig. S5: Absorption titration spectra of **1** as a function of added Fe(III) ion. The spectra were recorded 3h after addition of solutions of metal ions to that of probes. $[1] = 6.6 \mu M$. The increase in A₅₅₇ peak in comparison to A₅₂₅ peak in the spectra shows coordination pattern of Rho-B component becomes predominant over Rho-6G component over time.

Fig. S6: Fluorescence titration spectra of **1** as a function of added Fe(III) ion. The spectra were recorded 3h after addition of solutions of metal ions to that of probes. The increase in F_{580} peak in comparison to F_{550} peak in the spectra shows coordination pattern of the probe's Rho-B component becomes predominant over Rho-6G component over time. [**1**] = 1 μ M, λ_{ex} = 500 nm, em. and ex. b.p. = 5 nm, RT.

Fig. S7: Absorption titration spectra of $2(10\mu M)$ as a function of added Fe(III) ion in EtOH-H₂O(1:1v/v, 0.1M PBS) medium. Inset: Absorption intensity change (A-A₀) at 530 nm versus added concentration of Fe(III) ion.

Fig S8: (a): Absorption and (b) fluorescence spectra of **1** in presence of metal ions in **MeCN–H₂O** (9:1 v/v, PBS, 0.1M) medium. $\lambda_{ex} = 470$ nm, em. and ex b. p. = 5 nm, RT. The spectral pattern in different solvent/binary mixture medium shows that Fe(III) ion exhibited optimal absorption and fluorescence spectral responses in **1** among various metal ions due to higher probe-metal interaction irrespective of solvent condition (those investigated here).

Fig. S9: Non-linear regression plot of complex **1**-Fe(III) for determination of association constant (Ka). The absorption data taken at (a) 525nm and (b) 556 nm from the titration of **1** as a function of added Fe(III) ion.

Fig. S10: Non-linear regression plot of complex 1-Fe(III) for determination of association constant (Ka) through fluorescence titration. (a) The fluorescence intensity data taken at 550 nm (a) as a function of added Fe(III) ion or (b) $\ln(\text{Fe(III)})$. [1] = 1µM, λ_{ex} = 500 nm, em. and ex. b. p. = 5 nm, RT.

Fig. S11: Non-linear regression plot of change in (a) absorption at 530nm and (b) fluorescence at 550nm of **2** on addition of Fe(III) determination of association constant (Ka). Abs: $[\mathbf{2}] = 10\mu$ M, Fluorescence: $[\mathbf{2}] = 1\mu$ M, $\lambda_{ex} = 500$ nm, em. and ex. b. p. = 5 nm, RT.

Fig S12: Change in absorption at (a) $525nm(A_{525})$, (b) $557nm(A_{557})$ in $1(5\mu M)$ on equimolar Fe(III) ion addition as a function of time(s) in EtOH–H₂O (1:1 v/v, PBS, 0.1M) medium. (c) The same(A₅₂₅) when carried out in EtOH medium. [1] = [Fe(III)] = 5 μ M. (d) Change in absorption(A₅₂₅) in $1(10\mu$ M) on addition of Fe(III) as a function of time(s) in EtOH–H₂O (1:1v/v, PBS, 0.1M) medium, [1] = [Fe(III)] = 10 μ M. The non-linear regression fit (A = A₀ e^{-kt}) of first-order kinetics at desired time interval determines of rate constant (k).

Fig S13: Absorbance of 2 as a function of mole fraction of added Fe(III) ion for determination of complexation stoichiometry.

Fig. S14: Linear regression to the plot of fluorescence intensity (I_F/I_0) of **1** $(1\mu M)$ as a function of concentration of Fe(III) added. (S/N = 5), [**1**] = 1 μ M, λ_{ex} = 500 nm, em. and ex. b. p. = 5 nm, RT.

Fig. S15: Linear regression to the plot of fluorescence intensity $(I_F-I_0)_{550}$ of $2(1\mu M)$ as a function of concentration of Fe(III) added. (S/N = 5), [2] = 1 μ M, λ_{ex} = 500 nm, em. and ex. b. p. = 5 nm, RT.

C C			
No.	Probe	Sensitivity, LOD	References
1		4.11 μΜ	Y. Wang, H. Chang, W. Wu, X. Zhaoa, Y. Yang, Z. Xu, Z. H. Xu and L. Jia. <i>Sens.</i> <i>Actuat. B</i> , 2017, 239 , 60.
2	\sim	0.1µM	X. Li, Y. Yin, J. Deng, H. Zhong, J. Tang, Z. Chen, L.Yang and LJ. Ma. <i>Talanta</i> , 2016, 154 , 329.
3		0.396µМ	X. Bao, X. Cao, X. Nie, Y. Xu, W. Guo, B. Zhou, L. Zhang, H. Liao and T. Pang, <i>Sens. Actuat. B</i> , 2015, 208 , 54.
4	$\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$	4.8 μΜ	R. Kagit, M. Yildirim, O. Ozay, S. Yesilot and H. Oza. <i>Inorg. Chem.</i> , 2014, 53 , 2144.
5	$R \longrightarrow X \longrightarrow R \qquad X = $ $H_2N \longrightarrow NH_2 (a)$ $R = $ $H_2N \longrightarrow NH_2 (b)$ $H_2N \longrightarrow NH_2 (b)$	(a) 0.3 μM (b) 1.2 μM	 (a) Y. Du, M. Chen, Y. Zhang, F. Luo, C. He, M. Li and X. Chen, <i>Talanta</i>, 2013, 106, 261. (b) Y. Ding, H. Zhu, X. Zhang, JJ. Zhu and C. Burda, <i>Chem. Commun.</i>, 2013, 49, 7797.
6	Probe 1	11nM	Work in this manuscript
7	Probe 2	0.16µM	Work in this manuscript

Table ST1: Comparison in sensitivity among few rhodamine based probes towards detection of Fe(III) ion.

Fig. S16: the plot of fluorescence intensity ratio $[(I_F/I_0)_{580}/(I_F/I_0)_{550}]$ of **1** (1µM) as a function of concentration of Fe(III) added. (S/N = 5), [**1**] = 1µM, λ_{ex} = 500 nm, em. and ex. b. p. = 5 nm, RT.

Fig S17: Time-resolved fluorescence exponentially fitted decay profile of 1 alone and in presence of Fe(III) ion in EtOH-H₂O (1:1 v/v, 0.1M PBS) medium.

Fit : A+B1exp(-t/ τ_1)+B2exp(-t/ τ_2)+B3exp(-t/ τ_3)

Fit Results

Parameter Value Std. Dev. Rel % τ1 1.014E-010 s 8.7554E-012 s τ2 2.648E-009 s 7.2340E-011 s 5.659E-009 s τ3 1.6625E-010 s Shift 7.283E-011 s 6.572E-012 s B1 0.331 0.0279 26.88 B2 0.0006 40.92 0.019 B3 0.007 0.0007 32.20 А 61.551 1 χ² 1.195 Rel % Parameter Value Std. Dev. τ_1 6.643E-011 s 1.4727E-011 s τ_2 3.184E-009 s 8.5530E-011 s τ_3 5.619E-009 s 4.3265E-010 s Shift -1.069E-011 s 1.281E-011 s B1 0.451 0.0957 20.91 B2 0.028 0.0016 61.09 0.0017 B3 0.005 18.00 А 54.589 1 + Fe(III) χ² 1.107

Fig. S18: Fluorescence spectra of [1-Fe(III)] in-situ complex in presence of various anions and counter reagents. : [1] = 1 μ M, [Fe(III)] = 5 μ M, [anion] = 10 μ M, λ_{ex} = 500 nm, em. and ex. b. p. = 5 nm, RT.

Fig. S19: Absorption spectra of **2** (a) alone and (b) in presence of Fe(III) in varied proportion of a EtOH-H₂O binary mixture (v/v) as solvent medium. [**2**] = 1×10^{-5} M, [Fe(III)] = 5×10^{-5} M.

Fig. S20: Fluorescence spectra of **2** alone (a) and (b) in presence of Fe(III) in varied proportion of a EtOH-H₂O binary mixture (v/v) as solvent medium. [**2**] = 1×10^{-6} M, [Fe(III)] = 5×10^{-6} M, $\lambda_{ex} = 480$ nm, emission and excitation band pass = 5nm, RT. The error in fluorescence output (for 3 measurements) is < 10 % for ligand and < 5% for the complex.

Fig. S21: Absorption (a and b) and fluorescence(c and d) spectra of 1(a and c) and 1+Fe(III) (b and d) respectively as a function of varying pH in the acidic region. *Conditions*: EtOH– $H_2O(1:1 \text{ v/v})$, Abs: [1] = 10µM, [Fe(III)] = 20µM, Fluorescence: [1] = 1µM, [Fe(III)] = 5µM, $\lambda_{ex} = 500 \text{ nm}$, em. and ex. b. p. = 5 nm, RT.

Fig. S22: Absorption (a and b) and fluorescence(c and d) spectra of **2**(a and c) and **2**+Fe(III) (b and d) respectively as a function of varying pH in the acidic region. *Conditions*: EtOH– $H_2O(1:1 \text{ v/v})$, Abs: [**2**] = 10µM, [Fe(III)] = 25µM, Fluorescence: [**1**] = 1µM, [Fe(III)] = 5µM, $\lambda_{ex} = 500 \text{ nm}$, em. and ex. b. p. = 5 nm, RT.

Fig. S23: Comparison of absorption intensities of 1 and 2 as a function of varying pH in the acidic region. Inset: photograph of 2 in EtOH– H_2O (1:1 v/v) at different pH.

Fig S24: FTIR spectrum of 1 and [1+Fe(III)] complex.

Fig S26: ESI-MS spectrum of complex (1+Fe(III)).

Fig S27: ESI-MS spectrum of $1 (M_w: 923.51)$.

Fig S31: ¹³C-NMR spectrum of 2(CDCl₃).

Fig S32: HR-MS spectrum of 2 (M_w: 880.47).

Fig. S33: Fluorescence microscopic images of cross section of *root tissues of G. Pteridifolia* treated with Fe(III) at varying proportions(a) control, (b)10 ppm, (c) 20ppm (d) 30ppm followed by treatment with 1(50 ppm). The bright (orange) emission inferred to Fe(III) deposition on xylem cells.

Fig. S34: Fluorescence microscopic images of the cross section of root tissues of G. *Pteridifolia* treated with both Fe(III) ions and **1** at (a) 15mins and (b) after 24h.

Fig. S35: Microscopic images of the cross section of root tissues of *G. Pteridifolia* treated with both Fe(III) ions and 1 at (a) 15mins and (b) after 24h, showing the colour of 1-Fe(III) complexes.

Fig. S36: Microscopic images of the cross section of root tissues of *G. Pteridifolia* treated with Fe(III) ions at varying concentrations (a) 10ppm, (b)20 ppm, (c) 25ppm and (d) 30ppm followed by **1** showing the colour contrast of **1**-Fe(III) complexes.

Fig. S37: Fluorescence microscopic images of cross section of stem tissues of *G. Pteridifolia* treated with Fe(III) ion followed by treatment with 1(50 ppm). The bright (orange) emission inferred to Fe(III) deposition on xylem cells.