Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Supporting Information

Two-dimensional porous Co₃O₄ nanosheets for high-performance

lithium ion batteries

Li Li^{a,*}, Gaoxue Jiang^a, Runzhi Sun^a, Bingqiang Cao^{a, b,*}

^a Laboratory of Inorganic Energy and Environment Materials, School of Materials

Science and Engineering, University of Jinan, Jinan 250022, Shandong, China

^b Department of Physics and Institute of Laser, Qufu Normal University, Qufu 273165,

Shandong, China

Corresponding-Author: E-mail: mse_lil@ujn.edu.cn

Fig. S1 SEM images of the Co-precursors.

Fig. S2. (a) N_2 adsorption-desorption isotherms and (b) BJH pore size distribution

plots for the as-obtained Co_3O_4 nanosheets.

Fig. S3 Cycling performance of the commercial Co₃O₄.

Fig. S4 Galvanostatic curves of 2D porous Co₃O₄ nanosheets at different rates.