Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Electronic Supplementary Information (ESI)

Anthracene-based fluorescence turn-on chemodosimeter for the recognition of persulfate anion

*Pooja S. Badekar and Anupa A. Kumbhar** Department of Chemistry, Savitribai Phule Pune University, Pune 411007, India.

Email: aak@chem.unipune.ac.in

Fig. S1.¹H-NMR spectra of 1.

Fig. S2. Mass spectra of 1. Molecular ion peak is observed at m/z = 280 [M+H]⁺.

Fig. S3. Emission spectra of **1** (10 μ M, grey line) and **1** + deionised water (300 μ L, black line) to see quenching effect due to presence of water. Please note that emission intensity is not affected, however, change in spectral features were observed.

Fig.S4: Increase in fluorescence intensity of 1 (10 μ M) in presence of 460 molar equivalents of potassium persulfate with respect to time.

Fig.S5. ¹H-NMR spectrum of isolated product **2** recorded in DMSO-d6.

Fig.S6. Mass spectra of isolated product 2. Molecular ion peak is observed at m/z = 274.27 [M+2MeOH+H]⁺.

Fig. S7. ORTEP diagram of isolated product 2 of the reaction between 1 and potassium persulphate.

Fig. S8. Absorption and emission spectra of the isolated product 2. λ_{ex} = 392 nm.