Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Supporting Information

New Amphiphilic Block Copolymer-Modified Electrode for Supercapacitors

Zhen Wang^b, Yongtao Tan^{a,b}, Ying Liu^{a,b}, Lengyuan Niu^c, Lingbin Kong^{a,b}, Long Kang^{a,b}, Fen Ran^{a,b,*} ^a State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, P. R. China ^b School of Material Science and Engineering, Lanzhou University of Technology,

Lanzhou, 730050, Gansu, PR China

^c Institute of Coordination Bond Metrology and Engineering, College of Materials

Science and Engineering, China Jiliang University, Hangzhou 310018, PR China

Figure S1. FTIR spectra for PAA marco-RAFT agent, and amphiphilic block copolymer PAA-*b*-PAN-*b*-PAA

Figure S2. ¹H-NMR spectrum of amphiphilic block copolymer PAA-*b*-PAN-*b*-PAA (DMSO-*d* was used as solvent in the ¹H-NMR measurement)

Figure S3. The stability of the ABC in the electrolyte

Figure S4. Photos of (a) F-ABC-0.0, (b) F-ABC-0.2, (c) F-ABC-0.5 and (d) F-ABC-0.7

Figure S5. SEM images of activated carbon (AC)

Figure S6. Water contact angle of F-ABC-0.0, F-ABC-0.2, F-ABC-0.3, F-ABC-0.5 and F-ABC-0.7

Figure S7. Cyclic voltammogram curves of F-ABCs: a) 0.00 g, c) 0.20 g, e) 0.50 g and g) 0.70 g; and galvanostatic charging-discharging curves of F-ABCs: b) 0.00 g, d) 0.20 g, f) 0.50 g and h) 0.70 g

Figure S8. Electrochemical performance of symmetric supercapacitor assembled with F-ABC-0.0 in a two-electrode system: (a) cyclic voltammogram curves at different scan rates, (b) galvanostatic charging/discharging curves at different current densities, (c) cycling stability at 2 A/g. Insets are the CV curves before and after 5000 cycles at 30 mV/s (left) and 100 mV/s (right). (d) Electrochemical impedance spectroscopy before cycling and after 5000 cycles.

Figure S9. Equivalent circuit of all impedance spectra for different samples

Figure S10. Volumetric energy/power density of SCs based on the overall devicein this work

Sample	$R_{S}(\Omega)$	$\mathbf{R}_{\mathrm{CT}}\left(\mathbf{\Omega} ight)$	$\mathrm{R}_{\mathrm{w}}\left(\Omega ight)$
F-ABC-0.0//F-ABC-0.0 SC	7.1	0.01	0.0218
F-ABC-0.3//F-ABC-0.3 SC	6.912	0.03	0.0183

Table S1. Fitted parameters for EIS obtained by Zswinpwin software of different samples