Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Electronic Supplementary Information

Guanidinium salts as catalysers for ε-caprolactam production

V. Fernández-Stefanuto,^a P. Verdía^a and E. Tojo^{a*}

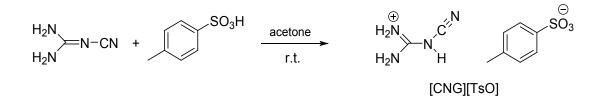
^aDepartment of Organic Chemistry, Faculty of Chemistry, University of Vigo, 36210 Vigo, Spain

*etojo@uvigo.es

Table of Contents

Experimental	2
Materials and methods	2
Synthesis of 1-cyanoguanidinium <i>p</i> -toluensulfonate [CNG][TsO]	3
Synthesis of 1-carbamoylguanidinium <i>p</i> -toluensulfonate [NH ₂ COG][TsO]	5
Synthesis of 1-carbamoylguanidinium nitrate [NH2COG][NO3]	7
Synthesis of ε-caprolactam	9
X-Ray data of [NH ₂ COG][TsO]	11

Experimental


Materials and methods

The following reagents and solvents were purchased from commercial suppliers and employed without further purification: N-cyanoguanidine (Acros Organics, 99.5 %), *p*-toluensulfonic acid monohydrate (Sigma Aldrich ACS reagent, 98.5 %), acetone (Sigma Aldrich ACS reagent, 99.5 %), nitric acid (Acros Organics, 65 %), cyclohexanone oxime (Acros Organics, 97 %).

The glass material employed in the synthetic reactions was dried in an oven at 60 $^{\circ}$ C during 24 h before its use. The evolution of the reactions was monitored by thin layer chromatography (t.l.c.) employing silica-gel sheets (Merck, TLC Silica gel 60 F₂₅₄). For the synthesis of the salts, a mixture of MeOH:CH₂Cl₂ = 1:9 was employed as eluent; for the synthesis of ϵ -caprolactam a mixture of AcOEt:Hex = 2:1 was employed as eluent; t.l.c. plates were visualized by exposure to U.V. (254 nm) and revealed by exposure to iodide (I₂) or, in the case of ϵ -caprolactam, by treatment with a solution of a revealing agent (*p*-anisaldehyde) and subsequent heating.

Spectroscopic data were provided by the Center of Scientific-Technological Support to Research (CACTI) of the University of Vigo. ¹H and ¹³C NMR spectra were recorded on a BRUKER ARX 4CO spectrometer at 400.1621 (¹H) and 100.6314 (¹³C) MHz, respectively. CDCl₃ (ACROS Organics, 99.6+ atom % D) and DMSO-d₆ (ACROS Organics, 99.5+ atom % D) were employed as deuterated solvents as received from the supplier. Chemical shifts are quoted in parts per million (ppm) relative to the signals corresponding to the residual non-deuterated solvents (CDCl₃: δ H =7.26 ppm, δ C = 77.16 ppm; DMSO-d₆: δ H = 2.50 ppm, $\delta C = 39.52$ ppm). Coupling constants are given in hertz (Hz). Mass spectra were recorded on a BRUKER FTMS APEXIII mass spectrometer. Elemental analysis were recorded on a Fisons Carlo Erba EA1108 elemental analyzer. The resolution of the structure of N-carbamoylguanidinium tosylate [NH₂COG][TsO] by X-Ray diffraction, was achieved on a BRUKER APEXII CCD and a BRUKER SMART 6000 CD diffractometers. Melting points of the solids were recorded on a STUART CIENTIFIC MELTING POINT APPARATUS SMP3. The pH values of the salts in solution were recorded at 70 °C with a Crison PH-25 Crison Instruments pH meter employing standard solutions of known pH values of 4.01 (potassium hydrogen phthalate), 7.00 (Potassium dihydrogen phosphate/ di-sodium hydrogen phosphate) and 9.21 (sodium tetraborate) for the calibration of the apparatus.

Synthesis of 1-cyanoguanidinium *p*-toluensulfonate [CNG][TsO]

P-Toluensulfonic acid monohydrated (1.00 g, 5.20 mmol) was dissolved in acetone (5 mL) and added over a suspension of N-cyanoguanidine (0.45 g, 5.2 mmol) in acetone (2 mL). The mixture was allowed to stir at r.t. during 4 h until the end of reaction, as indicated by t.l.c. (silica gel, MeOH:CH₂Cl₂ = 1:9). The solid obtained was filtered, washed with acetone and dried under high vacuum (2 x 10⁻¹ Pa) to give [CNG][TsO] (1.30 g, 96%) as a white solid; mp 230-231 °C (from acetone); pH (70 °C): 1.86; ¹H RMN (400 MHz, DMSO-d₆, referenced to DMSO-d₆) δ: 7.5 (2 H, d, *J* 7.7 Hz, Ar(2)H, Ar(6)H), 7.1 (2 H, d, *J* 7.7 Hz, Ar(3)H, Ar(5)H), 6.6 (4 H, br s, NH₂), 2.3 (3 H, s, CH₃); ¹³C RMN (100 MHz, DMSO-d₆, referenced to DMSO-d₆) δ: 163.2, 145.2, 138.6, 128.7, 125.9, 118.7, 21.2; MS-ESI *m/z* (%): 341 ([(C₂H₅N₄)₂(C₇H₇SO₃)]⁺, 100%) ([A₂B]⁺), 597 ([(C₂H₅N₄)₃(C₇H₇SO₃)₂]⁺, 73) ([A₃B₂]⁺), 853 ([(C₂H₅N₄)₅(C₇H₇SO₃)₃]⁺, 12) ([A₄B₃]⁺); Elemental Analysis (Found: C, 41.9; H, 5.0; N, 21.7; S, 12.4. C₉H₁₂N₄O₃S requires C, 42.2; H, 4.7; N, 21.9; S, 12.5%).

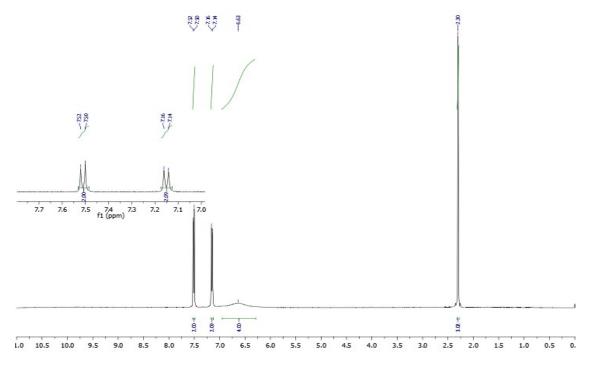


Fig S1.¹H RMN spectrum of [CNG][TsO].

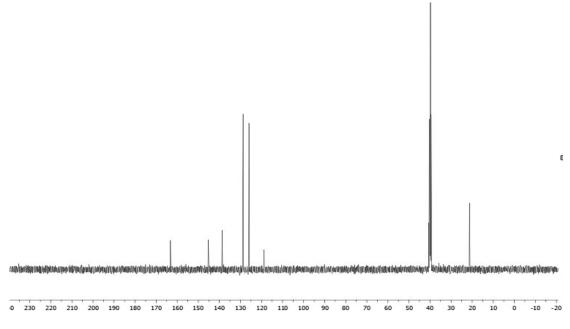


Fig S2. ¹³C RMN spectrum of [CNG][TsO].

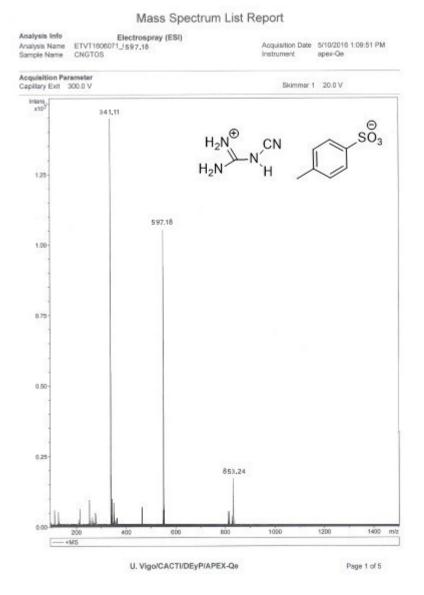
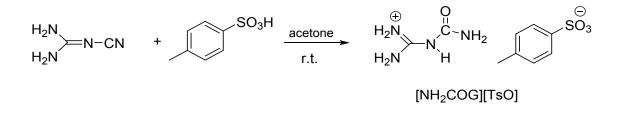



Fig S3. Mass spectrum of [CNG][TsO].

Synthesis of 1-carbamoylguanidiniump-toluensulfonate [NH₂COG][TsO]

P-Toluensulfonic acid monohydrated (1.00 g, 5.20 mmol) was dissolved in acetone (5 mL) and added over a suspension of N-cyanoguanidine (0.45 g, 5.2 mmol) in acetone (2 mL). The mixture was allowed to stir at r.t. during 12 h until the end of reaction, as indicated by t.l.c. (silica gel, MeOH:CH₂Cl₂ = 1:9). The solid obtained was filtered, recrystallized in H₂O and dried under high vacuum (2 x 10⁻¹ Pa) to give [NH₂COG][TsO] (1.25 g, 93%) as colourless crystals; mp178-80 °C (from H₂O); ¹H RMN (400 MHz, DMSO-d₆, referenced to DMSO-d₆) δ : 9.7 (1 H, s, NH), 8.0 (4 H, br s, C(NH₂)₂), 7.2 (2 H, s,NH₂C=O), 7.5 (2 H, d, *J* 7.7 Hz,Ar(2)H, Ar(6)H), 7.1 (2 H, d, *J* 7.7 Hz, Ar(3)H, Ar(5)H), 2.3 (3 H, s, CH₃); ¹³C RMN (100 MHz, DMSO-d₆, referenced to DMSO-d₆) δ : 155.8, 154.8, 144.7, 139.0, 128.8, 125.9, 21.2; MS-ESI *m/z* (%): 377 ([(C₂H₇N₄O)₂(C₇H₇SO₃)]⁺, 100%) ([A₂B]⁺), 651([(C₂H₇N₄O)₃(C₇H₇SO₃)₂]⁺, 62) ([A₃B₂]⁺), 925 ([(C₂H₇N₄O)₅(C₇H₇SO₃)₃]⁺, 32) ([A₄B₃]⁺); Elemental Analysis (Found: C, 40.8; H, 5.1; N, 20.2; S, 10.95. C₉H₁₄N₄O₄S requires C, 40.9; H, 5.1; N, 20.1; S, 10.85%).

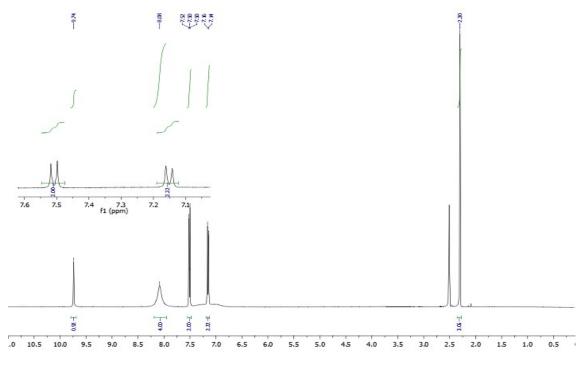
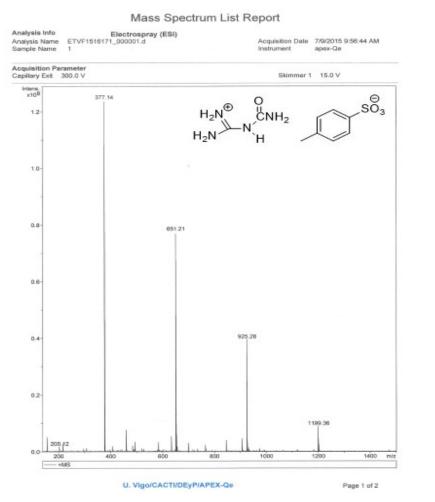
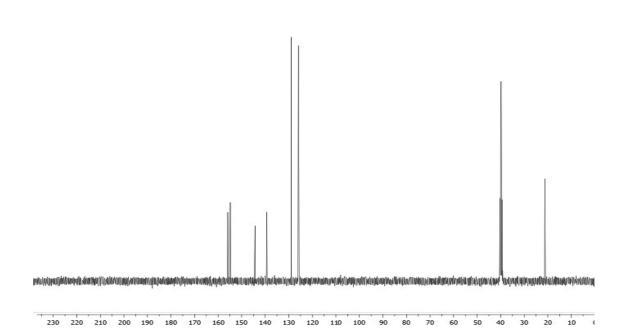
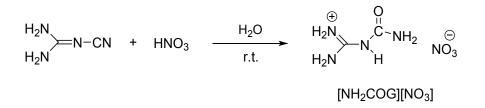
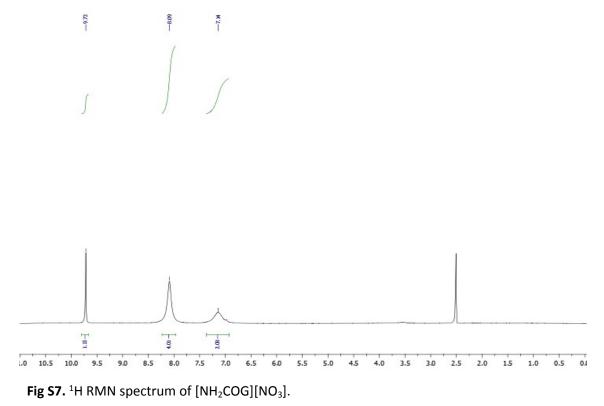
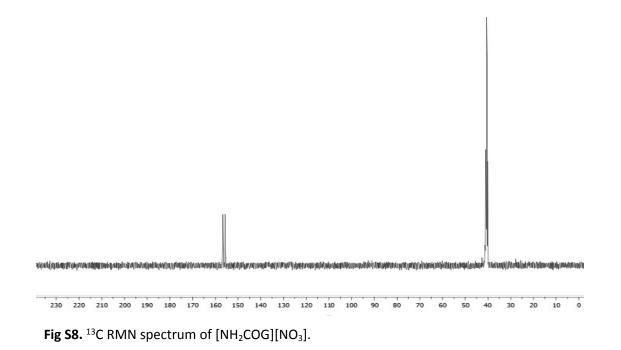


Fig S4. ¹H RMN spectrum of [NH₂COG][TsO].

Fig S6. Mass spectrum of [NH₂COG][TsO].

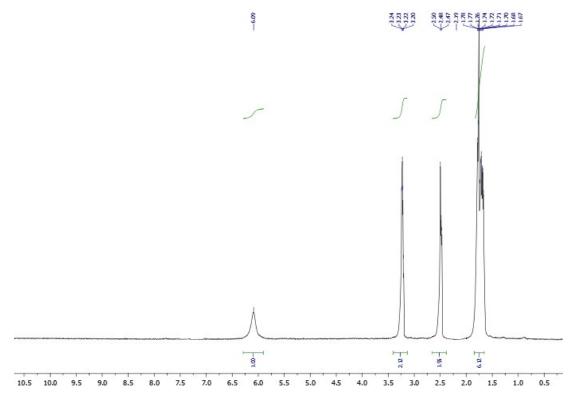





Fig S5. ¹³C RMN spectrum of [NH₂COG][TsO].

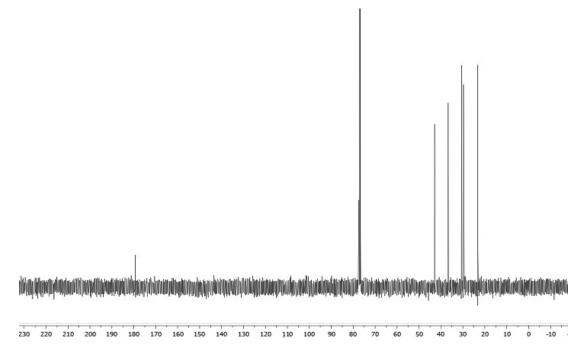

Synthesis of 1-carbamoylguanidinium nitrate [NH₂COG][NO₃]

Nitric acid (65%, 0.50 mL) was added dropwise over a solution of N-cyanoguanidine (0.50 g, 5.90 mmol) in H₂O (5 mL). The mixture was allowed to stir at r.t. for 15 min, and then it was boiled at 100 °C during 3 min. It was allowed to cool down to r.t. and a white precipitate was obtained; it was filtered, washed with H₂O and dried under high vacuum (2 x 10⁻¹ Pa) giving [NH₂COG][NO₃] (1.00 g, 94%) as a white solid ; mp 202-203 °C (from H₂O) (lit.,¹ 200 °C); ¹H RMN (400 MHz, DMSO-d₆, referenced to DMSO-d₆) δ : 9.7 (1 H, s, NH), 8.0 (4 H, s, C(NH₂)₂), 7.1 (2 H, s, NH₂C=O); ¹³C RMN (100 MHz, DMSO-d₆, referenced to DMSO-d₆) δ : 155.8, 154.8.

¹T.M. Klapötke, C. Miró Sabaté, *Heteroatom Chem.*, **2008**, *19*, 301-306.


Synthesis of *ɛ*-caprolactam

A solution of the cyclohexanone oxime (1.00 g, 8.80 mmol) in 25 mL of the selected solvent (H₂O, MeOH or DMF) was added over a suspension of the corresponding guanidinium salt (1-2 eq.) in 20 mL of the same solvent (Table 1). The mixture was heated at a temperature ranging from 60 °C to 90 °C and allowed to stir until the end of reaction, as indicated by t.l.c. (silica gel, AcOEt:Hex = 2:1). The solvent was then removed by heating under reduced pressure and the resulting crude reaction product was worked up by one of the following methods:


a) CH_2Cl_2 (20 mL) was added to the crude reaction product and the mixture was kept at -20 ^oC during 10 h. A precipitate was formed and separated by filtration under vacuum. The solvent was removed by heating under reduced pressure. H₂O (25 mL) was added and ε -caprolactam was extracted with CH_2Cl_2 (4 x 20 mL). CH_2Cl_2 was removed by heating under reduced pressure and ε -caprolactam (0.597 g, 60 %) was isolated with high purity (99%). b) As an alternative method, ε -caprolactam was isolated by sublimation from the mixture with the guanidinium salt. The mixture of ε -caprolactam and guanidinium salt was heated at 120 $^{\circ}$ C under reduced pressure (2 x 10⁻¹ Pa), employing a cold finger kept cool with a stream of water at 20 $^{\circ}$ C to allow the deposition of the sublimate. Crystals of pure ε -caprolactam (0.984 g, 99 %) were collected.

Data: mp 69.5-71 °C (from hexane) (lit.,² 72 °C); ¹H RMN (400 MHz, DMSO-d₆, referenced to DMSO-d₆) δ: 6.0 (1 H, s, NH), 3.2 (2 H, dd, J₁ 5.7 Hz, J₂ 9.6 Hz, C(3)H), 2.4 (2 H, m,C(7)H), 1.77* (2 H, m, C(6)H), 1.72* (2 H, m, C(4)H), 1.68 (2 H, m, C(5)H); ¹³C RMN (100 MHz, DMSO-d₆, referenced to DMSO-d₆) δ: 179.3, 42.8, 36.7, 30.6, 29.7, 23.2.

Fig S9. ¹H RMN spectrum of ε-caprolactam.

²Y. Izumi, S. Sato, K. Urabe, *Chem. Lett.*, **1983**, 1649-1652.

Fig S10. ¹³C RMN spectrum of ε -caprolactam.

X-Ray data of 1-carbamoylguanidinium *p*-toluensulfonate ([NH₂COG][TsO])

Empirical formula	$C_9 H_{14} N_4 O_4 S$	
Formula weight	274.30	
Temperature	296(2) K	
Wavelength	1.54178 Å	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	a = 6.6195(13) Å	$\alpha = 96.15(3)^{\circ}$.
	b = 8.2505(19) Å	β= 99.794(18)°.
	c = 12.924(5) Å	$\gamma = 97.771(14)^{\circ}$.
Volume	683.0(3) Å ³	
Z	2	
Density (calculated)	1.334 Mg/m ³	
Absorption coefficient	2.254 mm ⁻¹	
F(000)	288	
Crystal size	0.124 x 0.109 x 0.031 mm ³	
Theta range for data collection	3.502 to 68.189°.	
Index ranges	-7<=h<=7, -9<=k<=9, -15<=l<=15	
Reflections collected	14099	
Independent reflections	2439 [R(int) = 0.0578]	

Table S1. Crystal data and structure refinement for 1-carbamoylguanidinium p-toluensulfonate [NH2COG][TsO]

Completeness to theta = 67.679°	98.0 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7530 and 0.5733
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	2439 / 7 / 179
Goodness-of-fit on F ²	1.069
Final R indices [I>2sigma(I)]	R1 = 0.0573, wR2 = 0.1658
R indices (alldata)	R1 = 0.0680, wR2 = 0.1763
Extinction coefficient	n/a
Largest diff. peak and hole	0.388 and -0.170 e.Å ⁻³

Table S2. Bond lengths [Å] and angles [°] for 1-carbamoylguanidinium *p*-toluensulfonate([NH2COG][TsO]).

C(1)-O(1)	1.216(3)
C(1)-N(1)	1.322(4)
C(1)-N(2)	1.396(3)
C(2)-N(3)	1.304(3)
C(2)-N(4)	1.315(4)
C(2)-N(2)	1.347(3)
S(1)-O(4)	1.426(2)
S(1)-O(3)	1.443(2)
S(1)-O(2)	1.452(2)
S(1)-C(3)	1.749(3)
C(4)-C(3)	1.3900
C(4)-C(5)	1.3900
C(3)-C(4')	1.3900
C(4')-C(5')	1.3900
C(5')-C(6)	1.3900
C(6)-C(5)	1.3900
C(6)-C(7)	1.533(8)
O(1)-C(1)-N(1)	124.4(3)
O(1)-C(1)-N(2)	121.7(2)
N(1)-C(1)-N(2)	113.9(2)
N(3)-C(2)-N(4)	120.9(2)
N(3)-C(2)-N(2)	121.6(2)
N(4)-C(2)-N(2)	117.5(2)

C(2)-N(2)-C(1)	125.4(2)
O(4)-S(1)-O(3)	112.31(15)
O(4)-S(1)-O(2)	113.64(15)
O(3)-S(1)-O(2)	111.23(14)
O(4)-S(1)-C(3)	106.22(15)
O(3)-S(1)-C(3)	107.06(18)
O(2)-S(1)-C(3)	105.80(14)
C(3)-C(4)-C(5)	120.0
C(4)-C(3)-C(4')	120.0
C(4)-C(3)-S(1)	120.0(2)
C(4')-C(3)-S(1)	119.9(2)
C(5')-C(4')-C(3)	120.0
C(6)-C(5')-C(4')	120.0
C(5)-C(6)-C(5')	120.0
C(5)-C(6)-C(7)	118.4(8)
C(5')-C(6)-C(7)	121.6(8)
C(6)-C(5)-C(4)	120.0

Table S3. Hydrogen bonds for 1-carbamoylguanidinium *p*-toluensulfonate ([NH₂COG][TsO]) [Å and °].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N(3)-H(3A)O(3)#1	0.865(19)	2.09(2)	2.912(3)	157(3)
N(1)-H(1A)O(2)#2	0.840(18)	2.18(2)	3.005(4)	165(3)
N(2)-H(2)O(2)	0.862(18)	2.008(18)	2.867(3)	173(3)
N(1)-H(1B)O(3)	0.855(19)	2.04(2)	2.875(4)	165(3)
N(3)-H(3B)O(1)	0.855(18)	2.00(3)	2.638(3)	131(3)
N(3)-H(3B)O(4)#3	0.855(18)	2.47(3)	3.072(3)	128(3)
N(4)-H(4A)O(4)#1	0.849(18)	2.30(2)	3.104(4)	159(3)
N(4)-H(4A)O(3)#1	0.849(18)	2.62(3)	3.263(4)	134(3)
N(4)-H(4B)O(1)#4	0.860(18)	2.10(3)	2.735(3)	130(3)

Symmetry transformations used to generate equivalent atoms:

 $\#1 \ x,y{+}1,z \quad \#2 \ x{+}1,y,z \quad \#3 \ x{+}1,y{+}1,z \quad \#4 \ x{-}1,y,z$