Supplementary Information

Highly Selective Absorption of Polychloromethanes in Perhydroxylated Cucurbit[6]uril-based Supramolecular Assemblies

Xi Xia,^a Kai Chen,^{*b} Yuqing Yao,^a Chunyan Shan,^a Zhu Tao,^a Yunqian Zhang,^{*a} Qingdi Zhou^c and Gang Wei^{*d}

- [a] Prof. Yun-Qian Zhang, Prof. Zhu Tao, Mis. Xi Xia, Mr. Yu Qing Yao, Mis Chunyan Shan Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China; E-mail: sci.yqzhang@gzu.edu.cn (Yun-Qian Zhang)
- [b] Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044. E-mail: kaichen85@nuist.edu.cn or catqchen@163.com (Kai Chen)
- [c] Prof. Qingdi Zhou, School of Chemistry, the University of Sydney, NSW2006, Australia.
- [d] Prof. Gang Wei, CSIRO Manufacturing Flagship, PO Box 218, Lindfield, NSW 2070, Australia. E-mail: Gang.Wei@csiro.au

EXPERIMENTAL SECTION

Vapour absorption studies for A and B

The required solid compounds (**A** or **B**; 0.5 - 1.0 g) contained in a tared open glass phial was added to a sealed glass vessel which was then evacuated with the aid of a vacuum pump. Pumping was continued until the sample achieved constant weight. A second open container containing a few mL of the volatile liquid, chosen in turn from acetonitrile, methanol, ethanol, acetone, ethoxyethane, dichloromethane, trichloromethane or tetrachloromethane, was then added and the vessel resealed. The weight change of the sample was then determined at ~0.25-1h intervals within 15 hours to obtain the vapour absorption profile.

Absorption capacities (gram/per gram)	Α	В
tetrachloromethane	0.44	0.06
trichloromethane	0.30	0.30
acetonitrile	0.23	0.02
dichloromethane	0.22	0.34
ethoxyethane	0.20	0.12
ethanol	0.14	0.30
acetone	0.10	0.03
methanol	0.06	0.16

Table S1 Volatile compounds absorption profile of the porous compounds A and B

Figure S1 Powder X-ray diffraction (PXRD) of A and B, respectively

Figure S2 Titration ¹H NMR spectra of $(HO)_{12}Q[6]$ with increasing amount of (a) dichloromethane; (b) trichloromethane; (c) titration ¹³C NMR spectra of $(HO)_{12}Q[6]$ with increasing amount of tetrachloromethane in DMSO_{d6} at 20°C.

Figure S3 DTA (left) and TG (right) curves of compounds A, B in N₂ respectively.

Figure S4 lifetime experiments for the selected absorbates on A and B in five cycles

Compounds	А	В	
empirical formula	$C_{36}H_{80}N_{24}O_{46}$	$C_{36}H_{86}N_{24}O_{49}$	
formula weight	1585.24	1639.29	
crystal system	triclinic	monoclinic	
space group	<i>P</i> –1	<i>C</i> 2/c	
a(Å)	11.3453(13)	15.359(12)	
b(Å)	12.5873(15)	21.896(12)	
c (Å)	13.3419(16)	18.644(12)	
α(°)	61.922(4)	90.00	
$\beta(^{\circ})$	83.098(4)	100.105(12)	
γ (°)	69.125(4)	90.00	
$V(Å^3)$	1568.1(3)	6172(7)	
Z	1	4	
$D_{calcd}(g \cdot cm^{-3})$	1.641	1.706	
μ (MoK α)(mm ⁻¹)	0.151	0.157	
T(K)	223(2)	223(2)	
Unique reflns	5505	5494	
Obsd reflns	4508	3217	
Params	379	381	
R _{int}	0.0365	0.1298	
$R [I > 2\sigma(I)]^{a}$	0.0956	0.0998	
$wR[I>2\sigma(I)]^{b}$	0.3087	0.3802	
R [all data] ^a	0.1074	0.1694	
wR[all data] ^b	0.3280	0. 4026	
GOF on F ²	1.479	1.478	
$aR_{+} = \sum E - E / \sum E - b_{10}R_{+} = \sum E ^{2} - E ^{2} E ^{2} - E ^{2} E ^{2} + E E ^{2} + E E ^{2} + E E ^{2} + E E ^{2} + E E ^{2} + E E ^{2} + E E ^{2} + E E ^{2} + E E ^{2} + E E ^{2} + E E ^{2} + E E ^{2} + E E E ^{2} + E E E ^{2} + E E E E ^{2} + E E E ^{2} + E E E E ^{2} + E E E E ^{2} + E E E ^{2} + E E E ^{2} + E E E E ^{2} + E E E ^{2} + E E E E E ^{2} + E E E E ^{2} + E E E E E E ^{2} + E E E E E ^{2} + E E E E E E E E E E E E E $			

Table S2 Crystallographic data for compounds A and B

 ${}^{a}R_{1} = \Sigma ||F_{o}| |F_{c}|| / \Sigma |F_{o}|. {}^{b}wR_{2} = |\Sigma w(|F_{o}|^{2} |F_{c}|^{2})| / \Sigma |w(F_{o})^{2}|^{1/2}, \text{ where } w = 1 / [{}^{2}(F_{o}^{2}) + (aP)^{2} + bP]; P = (F_{o}^{2} + 2F_{c}^{2})/3.$