Supporting Information

Diketopyrrolopyrrole Based Organic Semiconductors with Different Numbers of Thiophene Units: Symmetry Tuning Effect on Electronic Devices

Qian Liu,^{a#} Abhijith Surendran,^{b#} Krishna Feron,^{c,d} Sergei Manzhos,^e Xuechen Jiao,^f

Christopher R. McNeill,^f Steven E. Bottle,^a John Bell,^a Wei Lin Leong*^{b,g} and Prashant

Sonar*a

^a School of Chemistry, Physics and Mechanical Engineering (CPME), Queensland University of Technology (QUT), Brisbane QLD 4000, Australia

^b School of Electrical & Electronic Engineering, Nanyang Technological University (NTU), 50 Nanyang Avenue 639798, Singapore

^c CSIRO Energy Centre, 10 Murray Dwyer Circuit, Mayfield West, NSW 2304, Australia

^d Centre for Organic Electronics, University of Newcastle, Callaghan, NSW 2308, Australia

^e Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore, Block EA #07-08, 9 Engineering Drive 1 117576, Singapore

^f Materials Science and Engineering, Monash University, Wellington Road, Clayton,

Victoria, 3800, Australia

^g School of Chemical and Biomedical Engineering, Nanyang Technological University, 50 Nanyang Drive, Singapore 637459, Singapore

Both authors contributed equally

Figure S2. ¹³C NMR spectrum of DPP13T.

Figure S3. HRMS spectrum of DPP13T.

Figure S5. ¹³C NMR spectrum of DPP23T.

Figure S6. HRMS spectrum of DPP23T.

Figure S8. ¹³C NMR spectrum of DPP33T.

Figure S9. HRMS spectrum of DPP33T.

Figure S10. Optical microscope images of spin-coated DPP13T (a), DPP23T (b) and DPP33T (c) films.

Figure S11. Mobility values for spin-coated DPP13T, DPP23T and DPP33T based bottom contact transistors.

Materials	Device Configuration	$\mu_{\rm e} \ {\rm cm}^2 {\rm V}^{-1} {\rm s}^{-1}$	$\mu_{\rm h} \ {\rm cm}^2 { m V}^{-1} { m s}^{-1}$	Ref.
DPP13T	BG/BC		1.18×10-4	This study
DPP23T	BG/BC		4.67×10-4	This study
DPP33T	BG/BC		1.11×10-3	This study
LGC-D118	TG/BC		3.04	S1
LGC-D127	TG/BC		3.16	S2
DDPP-TTAR	BC/TG		9.1×10 ⁻²	S3
Si1TDPP-EE-C6	BG/TC	5.1×10-4	3.7×10-3	S4
DPPa	BG/BC		5.91×10-3	S5
DPPb	BG/BC	3.4×10-3		S5
DPP-2T2P- 2DCV	BG/TC	0.168	1.5×10 ⁻²	S6
Ph(DPPT ₂) ₂	TG/BC		9.0×10 ⁻²	S7
DPPTT-H	BG/TC		0.20	S8

Table S1 Comparison of OFET mobility for small molecules based on DPP.

Reference

- S1 B. Lim, H. Sun, J. Lee and Y. Y. Noh, Sci. Rep., 2017, 7, 164.
- S2 B. Lim, H. Sun and Y.-Y. Noh, *Dyes Pigm.*, 2017, **142**, 17.
- S3 N. Zhou, S. Vegiraju, X. Yu, E. F. Manley, M. R. Butler, M. J. Leonardi, P. Guo, W.
 Zhao, Y. Hu and K. Prabakaran, J. Mater. Chem. C, 2015, 3, 8932.
- S4 M. J. Kim, M. Jung, W. Kang, G. An, H. Kim, H. J. Son, B. Kim and J. H. Cho, J.
 Phys. Chem. C, 2015, **119**, 16414.
- S5 A. K. Palai, A. Kumar, K. Sim, J. Kwon, T. J. Shin, S. Jang, S. Cho, S.-U. Park and S.
 Pyo, *New J. Chem.*, 2016, 40, 385.
- S6 J. Bai, Y. Liu, S. Oh, W. Lei, B. Yin, S. Park and Y. Kan, *RSC Adv.*, 2015, 5, 53412.
- S7 S. Wang, J. Yang, K. Broch, J. Novák, X. Cao, J. Shaw, Y. Tao, Y. Hu and W. Huang, *RSC Adv.*, 2016, 6, 57163.
- S8 Y. Wang, Q. Huang, Z. Liu and H. Li, *RSC Adv.*, 2014, 4, 29509.