Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Supporting Information

The synthesis of arylcyanamides: Copper-catalyzed consecutive desulfurization and C-N cross-coupling strategy

S N Murthy Boddapati,^{ab} Naresh Polam^a, Baby Ramana Mutchu^a, Hari Babu Bollikolla^{a,*}

^aDepartment of Chemistry, Acharya Nagarjuna University, NNagar-522 510, Guntur, AP-India

^b Department of Chemistry, C R Reddy P G College, Eluru-534002, AP-India

Contents	Page
General Information	S2
Experimental procedure for the synthesis of cyanamides and Characterization Data of the Products	S2-S10
References	S10
Scans of ¹ H and ¹³ C Spectra	S11-S32

General Information: Thiourea, DMSO, EtOH, EtOAC, n-Hexane, n-Heptane, 1,10-Phenanthroline, CuSO₄·5H₂O (98 %), CuI (98 %), CuBr (98 %), Cu₂O (97 %), CuCl (99 %), CuSO₄·5H₂O (99 %) and Cu(OAc)₂·H₂O (98 %), Et₃N, sodium bicarbonate, K₃PO₄·3H₂O, KOH, K₂CO₃, Cs₂CO₃ were purchased from Aldrich and used without further purification. The solvents were purchased and dried according to standard procedure prior to use.¹ ¹H NMR (400 MHz) spectra were recorded with a Varian 400 spectrometer. Infrared (IR) spectra recorded on a Perkin Elmer Spectrum one FT-IR spectrometer. VKSI Medico Centrifuge machine was used for our experimental procedure for the synthesis of substituted cyanamides.

Experimental section:

General Procedure for construction of Phenylcyanamide: To a stirred solution of DMSO solvent (2-3 mL), thiourea (1 mmol, 76 mg) was added slowly followed by Et_3N (1 mmol, 101 mg) and CuSO₄.5H₂O (50 mol %, 125 mg) at room temperature. The whole reaction mixture is stirred for one hour (until get the black color) at room temperature. After completion of the reaction (monitored by TLC), to this, iodobenzene (1 mmol, 204 mg), Cs₂CO₃ (1 mmol, 325 mg), CuSO₄.5H₂O (10 mol %, 25 mg) and 1,10-phenanthroline (20 mol %, 36 mg) were slowly added consecutively for several minutes and the reaction mixture was stirred for 12 h at 80 °C. The progress of the reaction was investigated by TLC (5 % ethylacetate in hexane). After completion of reaction, the reaction mixture was transferred into centrifuged tubes and the mixture was centrifuged for 10 min by using centrifugation machine. Black color solid was settled in the bottom of centrifuged tubes. The clear solution was concentrated by using rotary evaporator and the crude mixture was purified by silica gel (60-120 mesh) column chromatography using 5 % ethylacetate in hexane as eluent to obtain a phenyl cyanamide **2a** as a white solid.

Phenylcyanamide 2a¹: Analytical TLC on silica gel, 1:19 ethyl acetate/hexane $R_f = 0.8$; yield 90 %; ¹H NMR (400 MHz, CDCl₃) δ 7.37-7.33 (m, 2H), 7.29-7.25 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 137.8, 130.6, 130.1, 128.9, 114.3; FT-IR (KBr) 3350, 3064, 2222, 1693, 1489, 1250, 1070, 909 cm⁻¹. Anal. Calcd. for C₇H₆N₂: C, 71.17; H, 5.12; N, 23.71. Found: C, 71.28; H, 5.09; N, 23.62.

4-Methoxyphenylcyanamide 2b²: Analytical TLC on silica gel, 1:19 ethyl acetate/hexane $R_f = 0.8$; yield 95 %; ¹H NMR (400 MHz, CDCl₃) δ 7.18 (d, J = 8.8 Hz, 2H), 7.02 (d, J = 9.6 Hz, 2H), 5.81 (br s, 1NH), 3.33 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.1, 138.6, 131.9, 127.8, 121.7, 55.4; FT-IR (KBr) 3357, 3076, 2899, 2236, 1587, 1253, 1212, 1104, 1055, 941, 808 cm⁻¹. Anal. Calcd. for C₈H₈N₂O: C, 64.85; H, 5.44; N, 18.91; O, 10.80. Found: C, 64.99; H, 5.42; N, 18.85.

4-Methylphenylcyanamide 2c¹: Analytical TLC on silica gel, 1:19 ethyl acetate/hexane $R_f = 0.8$; yield 95 %; ¹H NMR (400 MHz, CDCl₃) δ 7.23-7.17 (m, 2H), 7.01 (d, J = 9.6 Hz, 2H), 2.33 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 142.3, 132.4, 128.5, 124.6, 120.0, 21.3; FT-IR (KBr) 3378, 3097, 2896, 2835, 2200, 1601, 1580, 1503, 1252, 1179, 1028, 927 cm⁻¹. Anal. Calcd. for C₈H₈N₂: C, 72.70; H, 6.10; N, 21.20. Found: C, 72.79; H, 6.09; N, 21.12.

4-Hydroxyphenylcyanamide 2d: Analytical TLC on silica gel, 1:19 ethyl acetate/hexane $R_f = 0.8$; yield 79 %; ¹H NMR (400 MHz, CDCl₃) δ 7.26-7.17 (m, 2H), 7.04-7.01 (m, 2H), 5.81 (br s, 1NH); ¹³C NMR (100 MHz, CDCl₃) δ 154.1, 138.0, 132.0, 127.8, 115.7; FT-IR (KBr) 3357, 3087, 2236, 1587, 1287, 1201, 1123, 1055, 971, 808 cm⁻¹. Anal. Calcd. for C₇H₆N₂O: C, 62.68; H, 4.51; N, 20.88; O, 11.93. Found: C, 62.82; H, 4.48; N, 20.82.

4-Aminophenylcyanamide 2e: Analytical TLC on silica gel, 1:19 ethyl acetate/hexane $R_f = 0.8$; yield 67 %; ¹H NMR (400 MHz, CDCl₃) δ 7.25-7.18 (m, 2H), 6.48-6.41 (m, 2H), 5.28 (br s, NH₂); ¹³C NMR (100 MHz, CDCl₃) δ 139.1, 132.5, 130.6, 129.1, 117.1; FT-IR (KBr) 3378, 3357, 3097, 2200, 1615, 1556, 1221, 1154, 927 cm⁻¹. Anal. Calcd. for C₇H₇N₃: C, 63.14; H, 5.30; N, 31.56. Found: C, 63.24; H, 5.27; N, 31.49.

NHCN

4-Chlorophenylcyanamide 2f¹: Analytical TLC on silica gel, 1:19 ethyl acetate/hexane $R_f = 0.6$; Yield 80%; ¹H NMR (400 MHz, CDCl₃) δ 7.22 (d, J = 8.8, 2H), 6.97-6.93 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 139.1, 132.5, 130.6, 129.1, 117.1; FT-IR (KBr) 3399, 3076, 2214, 1670, 1505, 1250, 1114, 1023, 959, 817 cm⁻¹. Anal. Calcd. for C₇H₅ClN₂: C, 55.10; H, 3.30; Cl, 23.24; N, 18.36. Found: C, 55.25; H, 3.28; N, 18.30.

4-Fluorophenylcyanamide 2g: Analytical TLC on silica gel, 1:5 ethyl acetate/hexane $R_f = 0.6$; yield 72 %; ¹H NMR (400 MHz, CDCl₃) δ 7.32-7.29 (m, 2H), 7.22 (d, J = 8.8 Hz, 2H), 6.39 (br s, 1NH); ¹³C NMR (100 MHz, CDCl₃) δ 154.7, 136.5, 126.2, 120.3, 114.9; FT-IR (KBr) 3359, 3056, 2217, 1654, 1554, 1394, 1279, 1140, 939, 822 cm⁻¹. Anal. Calcd. for C₇H₅FN₂: C, 61.76; H, 3.70; F, 13.96; N, 20.58. Found: C, 61.92; H, 3.67; N, 13.89.

4-(Cyanoamino)benzonitrile 2h: Analytical TLC on silica gel, 1:5 ethyl acetate/hexane $R_f = 0.5$; yield 40 %; ¹H NMR (400 MHz, CDCl₃) δ 7.40-7.37 (m, 2H), 7.34-7.31 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 140.4, 132.7, 128.1, 120.0, 115.6, 115.0; FT-IR (KBr) 3355, 3100, 2256, 2217, 1667, 1526, 1348, 1277, 1078, 973, 892 cm⁻¹. Anal. Calcd. for C₈H₅N₃: C, 67.12; H, 3.52; N, 29.35. Found: C, 67.20; H, 3.50; N, 29.29.

NHCN MeOOC

Methyl-4-(cyanoamino)benzoate 2i¹: Analytical TLC on silica gel, 1:4 ethyl acetate/hexane $R_f = 0.5$; yield 40 %; ¹H NMR (400 MHz, CDCl₃) δ 8.11 (d, J = 9.6 Hz, 2H), 7.38-7.33 (m, 2H), 5.91 (br s, 1NH), 3.80 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.8, 142.8, 134.4, 130.5, 130.0, 121.7, 54.8; FT-IR (KBr) 3415, 3082, 2896, 2234, 1749, 1675, 1607, 1524, 1459, 1345, 1261, 1145, 1099, 870 cm⁻¹. Anal. Calcd. for C₉H₈N₂O₂: C, 61.36; H, 4.58; N, 15.90; O, 18.16. Found: C, 61.50; H, 4.56; N, 15.84.

2-Nitrophenylcyanamide 2j: Analytical TLC on silica gel, 1:4 ethyl acetate/hexane $R_f = 0.5$; yield 60 %; ¹H NMR (400 MHz, CDCl₃) δ 8.40 (d, J = 9.2 Hz, 2 H), 7.65 (d, J = 8.8 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 149.6, 141.6, 136.7, 134.0, 132.1, 120.9, 115.1; FT-IR (KBr) 3375, 3065, 2215, 1656, 1564, 1490, 1379, 1229, 1125, 1036, 941, 832 cm⁻¹. Anal. Calcd. for C₇H₅N₃O₂: C, 39.73; H, 3.33; N, 10.30. Found: C, 39.88; H, 3.30; N, 10.23.

4-Formylphenylcyanamide 2k: Analytical TLC on silica gel, 1:9 ethyl acetate/hexane $R_f = 0.8$; yield 57 %; ¹H NMR (400 MHz, CDCl₃) δ 9.33 (s, 1H), 7.76-7.67 (m, 2H), 7.04-7.01 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 192.1, 145.6, 134.0, 132.1, 120.9, 115.1; FT-IR (KBr) 3355, 3219, 2256, 1750, 1687, 1603, 1556, 1352, 1254, 1102, 973, 892 cm⁻¹. Anal. Calcd. for C₈H₆N₂O: C, 65.75; H, 4.14; N, 19.17; O, 10.95. Found: C, 65.89; H, 4.12; N, 19.10.

NHCN H₃COC

4-Acetylphenylcyanamide 2l: Analytical TLC on silica gel, 1:5 ethyl acetate/hexane $R_f = 0.8$; yield 61 %; ¹H NMR (400 MHz, CDCl₃) δ 8.11 (d, J = 9.6 Hz, 2H), 7.38-7.33 (m, 2H), 5.91 (br s, 1NH), 2.52 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 190.9, 144.5, 128.1, 120.0, 115.6, 115.0, 25.6; FT-IR (KBr) 3415, 3102, 2902, 2234, 1749, 1645, 1597, 1532, 1459, 1353, 1254, 1156, 1045, 892 cm⁻¹. Anal. Calcd. for C₉H₈N₂O: C, 67.49; H, 5.03; N, 17.49; O, 9.99. Found: C, 67.61; H, 5.01; N, 17.43.

4-Vinylphenylcyanamide 2m: Analytical TLC on silica gel, 1:9 ethyl acetate/hexane $R_f = 0.8$; yield 62 %; ¹H NMR (400 MHz, CDCl₃) δ 7.35-7.30 (m, 2H), 7.26-7.21 (m, 2H), 6.73 (dd, J = 12.4, 16 Hz, 1H), 6.09 (br, s, 1H), 5.55 (d, J = 14 Hz, 1H), 4.95 (d, J = 8.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 139.6, 137.8, 134.5, 130.9, 129.9, 117.7, 113.9; FT-IR (KBr) 3375, 3199, 2215, 1656, 1602, 1564, 1490, 1379, 1229, 1125, 1036, 941, 832 cm⁻¹. Anal. Calcd. for C₉H₈N₂: C, 74.98; H, 5.59; N, 19.43. Found: C, 75.08; H, 5.56; N, 19.36.

o-Tolylcyanamide 2o²: Analytical TLC on silica gel, 1:19 ethyl acetate/hexane $R_f = 0.8$; yield 82 %; ¹H NMR (400 MHz, CDCl₃) δ 7.26-7.21 (m, 1H), 7.17-7.12 (m, 2H), 6.99 (d, J = 8.8 Hz, 1H), 6.09 (br s, 1NH), 2.14 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 147.0, 139.6, 137.8, 134.5, 130.9, 129.9, 117.0, 20.6; FT-IR (KBr) 3412, 3074, 2867, 2223, 1690, 1435, 1379, 1229, 1125, 1036, 941, 875 cm⁻¹. Anal. Calcd. for C₈H₈N₂: C, 72.70; H, 6.10; N, 21.20. Found: C, 72.80; H, 6.02; N, 21.12.

m-Tolylcyanamide 2p²: Analytical TLC on silica gel, 1:19 ethyl acetate/hexane $R_f = 0.8$; yield 80 %; ¹H NMR (400 MHz, CDCl₃) δ 7.39 (s, 1H), 7.22 (d, J = 8.8, 1H), 6.97-6.93 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 139.6, 131.6, 131.3, 130.4, 120.3, 120.0, 115.4, 24.1; FT-IR (KBr) 3423, 3048, 2899, 2217, 1656, 1588, 1490, 1409, 1288, 1261, 1123, 1078, 823. Anal. Calcd. for C₈H₈N₂: C, 72.70; H, 6.10; N, 21.20. Found: C, 72.80; H, 6.02; N, 21.12.

2,4-Dimethylphenylcyanamide 2q¹: Analytical TLC on silica gel, 1:19 ethyl acetate/hexane $R_f = 0.8$; yield 93 %; ¹H NMR (400 MHz, CDCl₃) δ 7.03 (s, 1H), 6.85 (d, J = 7.6 Hz, 1H), 6.56 (d, J = 8.0 Hz, 1H), 2.30 (s, 3H), 2.27 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 139.6, 137.8, 134.5, 130.9, 129.9, 119.9, 113.9, 20.6, 18.2; FT-IR (KBr) 3368, 3077, 2888, 2863, 2212, 1635, 1599, 1513, 1491, 1287, 1215, 1027, 823 cm⁻¹. Anal. Calcd. for C₉H₁₀N₂: C, 73.94; H, 6.89; N, 19.16. Found: C, 74.02; H, 6.88; N, 19.09.

N,1-Diphenyl-1*H*-tetrazol-5-amine A: Analytical TLC on silica gel, 3:7 ethyl acetate/hexane $R_f = 0.7$; yield 88 %; ¹H NMR (400 MHz, CDCl₃) δ 7.54-7.41 (m, 7H), 6.85 (d, *J* = 8.8 Hz, 3H), 6.02 (br s, 1NH); ¹³C NMR (100 MHz, CDCl₃) δ 138.4, 132.8, 131.6, 129.2, 128.5, 128.1, 121.5, 120.9, 117.6; FT-IR (KBr) 3426, 3097, 1645, 1631, 1567, 1512, 1491, 1287, 1250, 1146, 1027, 896 cm⁻¹. Anal. Calcd. for C₁₃H₁₁N₅: C, 65.81; H, 4.67; N, 29.52. Found: C, 65.90; H, 4.65; N, 29.45.

N-(4-Methoxyphenyl)-1-phenyl-1*H*-tetrazol-5-amine **B**: Analytical TLC on silica gel, 3:7 ethyl acetate/hexane $R_f = 0.7$; yield 80 %; ¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, J = 7.6 Hz, 2H), 7.54-7.47 (m, 5H), 6.85 (d, J = 8.4 Hz, 2H), 6.02 (br s, 1NH), 3.77 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 154.7, 142.9, 133.7, 132.6, 129.7, 129.5, 129.3, 126.1, 121.4, 55.0; FT-IR (KBr)

3426, 3082, 2900, 1657, 1612, 1586, 1514, 1448, 1325, 1216, 1145, 1099, 829 cm⁻¹. Anal. Calcd. for C₁₄H₁₃N₅O: C, 62.91; H, 4.90; N, 26.20; O, 5.99. Found: C, 63.05; H, 4.88; N, 26.14.

N-(4-Chlorophenyl)-1-phenyl-1*H*-tetrazol-5-amine C: Analytical TLC on silica gel, 3:7 ethyl acetate/hexane $R_f = 0.7$; yield 82 %; ¹H NMR (400 MHz, CDCl₃) δ 7.77-7.48 (m, 4H), 7.25 (d, *J* = 6.8 Hz, 3H), 7.16 (d, *J* = 8.8 Hz, 2H), 5.96 (br s, 1NH); ¹³C NMR (100 MHz, CDCl₃) δ 141.7, 137.0, 132.3, 128.3, 128.1, 127.8, 127.0, 124.7, 118.1; FT-IR (KBr) 3420, 3090, 1645, 1601, 1590, 1489, 1125, 1036, 941, 854, 788, 612 cm⁻¹. Anal. Calcd. for C₁₃H₁₀ClN₅: C, 57.47; H, 3.71; Cl, 13.05; N, 25.78. Found: C, 57.62; H, 3.69; N, 25.72.

N-(4-Fluorophenyl)-1-phenyl-1*H*-tetrazol-5-amine **D**: Analytical TLC on silica gel, 3:7 ethyl acetate/hexane $R_f = 0.7$; yield 85 %; ¹H NMR (400 MHz, CDCl₃) δ 7.64-7.33 (m, 7H), 7.12 (d, *J* = 8 Hz, 2H), 5.98 (br s, 1H, 1NH); ¹³C NMR (100 MHz, CDCl₃) δ 152.0, 142.1, 134.7, 133.0, 128.6, 128.5, 120.6, 119.3, 114.3, 114.0; FT-IR (KBr) 3389, 3088, 1693, 1612, 1543, 1489, 1421, 1400, 1239, 1121, 1070, 927, cm⁻¹. Anal. Calcd. for C₁₃H₁₀FN₅: C, 61.17; H, 3.95; F, 7.44; N, 27.44. Found: C, 61.32; H, 3.93; N, 27.37.

N-(2-Nitrophenyl)-1-phenyl-1*H*-tetrazol-5-amine E: Analytical TLC on silica gel, 3:7 ethyl acetate/hexane $R_f = 0.7$; yield 70 %; ¹H NMR (400 MHz, CDCl₃) δ 8.92 (br s, 1NH), 8.09-8.06 (m, 2H), 8.05-7.76 (m, 2H), 7.74 (d, J = 2Hz, 2H), 7.05 (d, J = 7.2Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 152.8, 146.3, 143.8, 141.8, 137.3, 129.6, 127.1, 125.6, 121.0, 120.7, 118.0; FT-IR

(KBr) 3417, 3087, 1667, 1654, 1612, 1567, 1521, 1458, 1394, 1332, 1265, 1104, 1080, 941 cm⁻¹. Anal. Calcd. for C₁₃H₁₀N₆O₂: C, 55.32; H, 3.57; N, 29.77; O, 11.34. Found: C, 55.49; H, 3.53; N, 29.70.

N-(2,4-Dimethylphenyl)-1-phenyl-1*H*-tetrazol-5-amine **F**: Analytical TLC on silica gel, 3:7 ethyl acetate/hexane $R_f = 0.7$; yield 80 %; ¹H NMR (400 MHz, CDCl₃) δ 7.68-7.27 (m, 5H), 7.09 (s, 1H), 6.84 (d, *J* = 7.2 Hz, 2H), 5.90 (br s, 1H, 1NH), 2.47 (s, 3H), 2.34 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 143.4, 135.3, 134.8, 134.1, 133.2, 131.4, 130.0, 129.9, 127.1, 125.5, 121.4, 21.0, 20.9; FT-IR (KBr) 3424, 3054, 2896, 2855, 1651, 1602, 1580, 1503, 1358, 1252, 1179, 1056, 1028, 898 cm⁻¹. Anal. Calcd. for C₈H₆Br₂N₂O: C, 31.41; H, 1.98; N, 9.16; Found: C, 31.55; H, 1.96; N, 9.10.

References:

- 1. Ghosh, H.; Yella, R.; Ali, A. R.; Sahoo, S. K.; Patel, B. K. Tetrahedron Lett. 2009, 50, 2407.
- Chen, C.-Y.; Wong, F. F.; Huang, J.-J.; Lin, S.-K.; Yeh, M.-Y. *Tetrahedron Lett.* 2008, 49, 6505.

¹H NMR Spectra of Compound-**2a**

¹³C NMR Spectra of Compound-**2a**

¹H NMR Spectra of Compound-**2b**

¹³C NMR Spectra of Compound-**2b**

¹H NMR Spectra of Compound-**2c**

¹³C NMR Spectra of Compound-2c

¹H NMR Spectra of Compound-**2d**

¹³C NMR Spectra of Compound-**2d**

¹H NMR Spectra of Compound-**2e**

¹³C NMR Spectra of Compound-**2e**

¹HNMR Spectra of

Compound-2g

¹³C NMR Spectra of Compound-**2g**

¹³C NMR Spectra of Compound-**2h**

¹H NMR Spectra of Compound-**2**j

¹³C NMR Spectra of Compound-**2**j

¹³C NMR Spectra of Compound-**2k**

¹H NMR Spectra of Compound-**2**I

¹³C NMR Spectra of

Compound-2I

¹H NMR Spectra of

Compound-2m

A

¹H NMR Spectra of Compound-A

¹H NMR Spectra of Compound-**B**

¹H NMR Spectra of Compound-C

¹³C NMR Spectra of Compound-C

¹H NMR Spectra of Compound-**D**

¹³C NMR Spectra of Compound-**D**

ppm

¹³C NMR Spectra of Compound-E

¹³C NMR Spectra of Compound-**F**