Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Electronic Supplementary Information

Visible-light-mediated dehydrogenative cross-coupling between terminal alkynes and aldehydes by employing supramolecular polymeric ensemble of PBI derivative

Meenal Kataria⁺, Harnimarta Deol⁺, Gurpreet Singh, Manoj Kumar, Vandana Bhalla*

Department of Chemistry, UGC Sponsored Centre for Advanced Studies-1, Guru Nanak Dev University, Amritsar 143005, and Punjab, India Fax: +91 (0)183 2258820; Tel: +91 (0)183 2258802-9 ext.3202, 3205. E-mail: vanmanan@yahoo.co.in, mksharmaa@yahoo.co.in

Contents

- S3-S4 General Experimental Procedures.
- **S5-S6** Comparison tables
- S7 UV-vis spectra of derivative 3 upon various additions of water fractions and TEM studies.
- S8 Concentration dependent ¹H NMR spectrum of derivative 3. And UV-vis spectra of derivative 3 in presence of Zn²⁺ ions.
- **S9** The DLS studies of solution of derivative **3** in presence of zinc ions and XPS studies.
- S10 X-Ray Diffraction (XRD) pattern. and ¹H NMR of derivative 4.
- S11 Mass spectrum of derivative 4.and¹H NMR spectra of derivative 3 and derivative $3+Zn^{2+}$ ions in (D₂O:THF-d₈).
- S12 Mass spectrum of polymeric species, small-angle X-ray scattering (SAXS) measurements of the derivative 3 in the presence of Zn²⁺ ions and TEM image of ZnO NPs.
- S13 DLS of ZnO NPs (10-18 nm) and AAS data.
- S14 ¹H NMR and ¹³C NMR of derivative 3.

S15 Mass spectrum of derivative **3**.

S16-S28 ¹H NMR spectrum of catalytic reaction products 7a-7j and 8b-8g.

S29-30Catalytic efficiency, recyclability of supramolecular polymer 4:ZnO NPs for photocatalytic dehydrogenative coupling reaction and Atomic absorption Studies (AAS)

S31 Proposed mechanism of dehydrogenation reaction.

S32 ¹HNMR and ¹³CNMR of phenylmethanol.

GENERAL EXPERIMENTAL SECTION

Materials and reagents: All reagents were purchased from Aldrich and were used without further purification. THF was dried over sodium and benzophenone as an indicator. UV-vis studies were performed in THF and distilled water .

Instrumentation: UV-vis spectra were recorded on a SHIMADZU UV-2450 spectrophotometer, with a quartz cuvette (path length, 1 cm). The cell holder was thermostatted at 25°C. The fluorescence spectra were recorded with a SHIMADZU- 5301 PC spectrofluorometer. UV-vis spectra were recorded on Shimadzu UV-2450PC spectrophotometer with a quartz cuvette (path length: 1 cm). The cell holder was thermostatted at 25°C. The scanning electron microscope (SEM) images were obtained with a field-emission scanning electron microscope (SEM CARL ZEISS SUPRA 55). The TEM mages was recorded from Transmission Electron Microscope (TEM) - JEOL 2100F.. The dynamic light scattering (DLS) data were recorded with MALVERN Instruments (Nano-ZS). Elemental analysis was done using a Flash EA 1112 CHNS/O analyser from Thermo Electron Corporation. ¹H and ¹³C NMR spectra were recorded on a BRUKER-AVANCE-II FT-NMR-AL 500 MHz spectrophotometer using CDCl₃, DMSO-d₆ as solvent and tetramethylsilane, SiMe4 as internal standards. Data are reported as follows: chemical shifts in ppm, multiplicity (s = singlet, br = broad signal, d = doublet, t = triplet, m = multiplet), coupling constants J (Hz), integration and interpretation. Silica gel 60 (60-120 mesh) was used for column chromatography.

UV-vis and Fluorescence Titrations. A 10^{-3} (M) stock solution of derivative **3** was prepared by dissolving 13.43 mg of derivative **3** in 10.0 ml of dry THF. 30 µl of this stock solution was further diluted with 2970 µl water/THF to prepare 3.0 ml solution of derivative 3 (10 µM) and this solution was used for each UV-vis experiment.

Synthesis of PBI derivative 3

To a solution of **1** (0.5 g, 0.5656 mmol) and **2** (0.438 g, 1.24 mmol) in 20.0 mL 1,4 dioxane were added potassium carbonate (1.2 g, 4.52 mmol) and distilled water (2.0 mL).The reaction mixture was charged

with $[Pd(PPh_3)_2Cl_2]$ as catalyst (0.326 g, 0.28 mmol) under an N₂ atmosphere and it was refluxed at 90°C. After 24h it was cooled to RT. The 1,4-dioxane was then removed under vacuum, treated with water (25 mL) and extracted with chloroform (3 × 20 mL). The combined organic layer was then washed with water, dried over anhydrous Na₂SO₄ and removed under reduced pressure to give a solid residue. This residue so obtained was purified by column chromatography using chloroform/methanol mixture (98:2) which gave derivative 3 in 60 % yield a dark red solid, melting point: 235°C. ¹H NMR (CDCl₃, 400 MHz, ppm) δ = 8.83 (s, 4H), 8.76 (d, J = 8 Hz, 4H), 8.72 (d, J = 8 Hz, 4H), 8.68 (s, 2H), 8.22 (d, J = 8 Hz, 4H), 8.07 (d, J = 8 Hz, 2H), 7.94 (d, J = 8 Hz, 4H), 7.89-7.91 (m, 2H), 7.74 (d, J = 8 Hz, 4H), 7.39-7.37 (m, 4H), 4.19 (t, J = 4 Hz, 4H), 1.72 (s, 4H), 1.24 (s, 36H), 0.86 (t, J = 6 Hz, 6H). The ¹³C NMR (CDCl₃, 125 MHz, ppm) 163.5, 156.2, 149.2, 142.8, 140.3, 138.9, 137.0, 135.2, 134.7, 132.7,130.4, 129.8, 129.2, 127.8, 124.0, 122.4, 122.1, 121.4, 118.9, 31.9, 29.7, 29.6, 29.5, 29.4, 27.2, 22.7, 14.1. The mass spectrum of derivative **3** showed a parent ion peak at m/z = 1341.6642 [M] (Fig. S17-19, ESI†); Elemental analysis: calcd for C90H84N8O4: C, 80.57; H, 6.31; N, 8.35; O, 4.77. Found: C, 80.56; H, 6.32; N, 8.33; O, 4.79.

Preparation of the supramolecular polymer 4:ZnO NPs

A solution of derivative **3** (10 μ M, 3 mL) in (H₂O/THF ,1:1) and Zn(ClO₄)₂ in THF (0.1 M) was stirred for 14 h at RT After continuous stirring the colour of the mixture changed from red to light yellow green demonstrating the formation of the supramolecular polymer 4:ZnO NPs. The resulting solution was sonicated to obtain a homogeneous mixture and 500 μ l of this solution (4 μ mol) was used as such in each photocatalytic experiment **Table S1**: Comparison of method for the preparation of supramolecular polymer **4**: ZnO NPs in this manuscript with other reported methods in the literature for the preparation of ZnO NPs.

Ent ry	Method of preparation of NPs	NPs	Reducing agent/Oxid izing agent	Special additive or surfactan t	Temp (°C)	Time	Shape of NPs	Size (nm)	Application of NPs	Journals
1	Wet Chemical method	Supramo lecular polymer 4:ZnO NPs	No	No	RT	14 h	Spherical	3-5	Photocatalytic Dehydrogenati ve coupling reaction	Present manuscript
2	Sol-gel	ZnO	Yes	Yes	RT	-	Thorn	50	Nano-antibiotics	<i>Scientific</i> <i>Reports</i> 6:27689 DOI: 10.1038/srep2 7689
3	Chemical method	ZnO	Yes	No	60 °C	3 h	Nanosheet -Nanorod	50-80	NO ₂ Sensor	ACS Appl. Mater. Interfaces 2016, 8, 8600–8607
4	Ball milling methodology	ZnO	Yes	No	600 °C	3 h	Hexagona l and flower like	3-5	Photocatalytical ly	Green Chem., 2014, 16, 2876–2885 2877
5	Coprecipitatio n method	ZnO	Yes	Yes	60 ºC	24 h	Nanofake- like	38	Antibacterial	J. Mater. Chem. B, 2013, 1, 5950– 5962
6	Microfuidic system	ZnO	Yes	No	60 ⁰C	-	Irregular morpholo gy	3-5	Photovoltaic application	<i>Nanoscale,</i> 2014, 6, 2840
7	Chemical method	ZnO	Yes	-	-	-	Irregular morpholo gy	20	Photocatalytic oxidation of methane	<i>Natu.Commun.</i> 7:12273 DOI: 10.1038/ncom ms12273
8	Wet chemical method	ZnO	No	No	RT	3 h	Spherical shape	10-20	One-pot multicomponent synthesis of tetrahydropyridi nes	Chem. Commun., 2015, 51, 1483
9	Cryogenic ball-milling	ZnO	Yes	No	600 °C	3 h	Quasi- spherical	60	antibacterial	<i>J. Mater.</i> <i>Chem.</i> B, 2014, 2, 3065
10	wet chemical method	ZnO	Yes	No	500- 800 °C	-	Nanocube s.	~4–5	Photocatalyst	<i>Green Chem.</i> , 2012, 14, 2790
11	Chemical method	ZnO	Yes	No	60 °C	3 h	Speherical	5	Thin-Film Transistors	<i>Chem. Mater.</i> 2012, 24, 3517–3524

Table S2: Comparison of catalytic efficiency of supramolecular ensemble **4**: ZnO NPs for the photocatalytic dehydrogenative coupling with other reported photocatalysts in literature.

Serial.No	Catalyst	Time	Temparature (°C)	Publication
1	Supramolecular polymer 4:ZnO NPs	24 h	RT	This manuscript
2	CuBr ₂	12 h	60	ACS Catal. 2016, 6, 1263–1267
3	Zn(OTf) ₂	27 h	80	Angew. Chem. Int. Ed. 2015, 54, 15850 –15853
4	AuCl ₃	10 h	40	J. Am. Chem. Soc. 2014, 136, 12233–12236
5	copper nanoparticle	24 h	40	<i>Green Chem.</i> , 2013, 15, 2356– 2360
6	Pd catalyst	1 h	110	J. Org. Chem, Vol. 69, No. 5, 2004
7	iodine reagents	3 h	120	Z
8	Ir (III)- and Rh (III)- catalyzed,	20 h	RT	Org. Lett. 2015, 17, 920–923
9	Cu(OTf) ₂	14 h	60	Org. Lett., Vol. 15, No. 17, 2013
10	ZnBr ₂	24 h	100	J. Am. Chem.Soc. 2012, 134, 2504–2507

Fig. S1 UV-vis spectra showing variation of absorption intensity of derivative 3 in different H₂O/THF mixtures.

Fig. S2 (A) TEM image of aggregates of derivative **3** in H_2O/THF (1:1); (B) Schematic diagram showing formation of *J*-aggregates of derivative **3** in H_2O/THF (1:1) solvent mixture.

Fig. S3 Concentration dependent ¹H NMR spectrum of derivative **3**: (a) 3 mg and (b) 5 mg each in 0.6 ml CDCl₃. NMR frequency 500 MHz.

Fig. S4 UV-vis spectra of derivative **3** in presence of Zn^{2+} ions (200 equiv.) recorded at different time intervals. UV-vis band at 370 nm corresponds to ZnO nanoparticles.

Fig. 5 The DLS studies of solution of derivative 3 in presence of zinc ions showed the presence of aggregates having average size of 600 nm.

Fig. S6A XPS analysis of supramolecular polymer 4:ZnO NPs and 6B : TEM image of ZnO NPs.

Fig. S7 X-Ray Diffraction (XRD) pattern of ZnO NPs.

Fig. S8 The ¹H NMR spectrum of Derivative 4 in CDCl₃.

Fig 9. The mass spectrum of derivative 4.

Fig. 10 (a) ¹H NMR spectra of derivative 3 and (b) derivative $3 + Zn^{2+}$ ions in (D₂O:THF(d₈),(1:1, v:v) solvent mixture.

Fig. S12 The small-angle X-ray scattering (SAXS) measurements of the derivative **3** in the presence of Zn^{2+} ions H₂O/THF (1:1) showed a peak at 0.4 nm (Q). Further, the peak is observed at 3.4 nm (Q).

Fig. S13a DLS of ZnO NPs prepared by reported method.

Fig. S13b AAS data to calaculate amount of zinc deposited on the catalyst.

The solution was 1000 times diluted for AAS studies. Thus, the toatal amount of Zinc deposited on the catalyst= 1.280*1000= 1280ppm

Fig. S15 The ¹³C NMR spectrum of Derivative 3 in CDCl₃.

Fig. S16 The mass spectrum of derivative 3.

Characterization of compounds

¹**Compound 7a.** (Yellow solid) ¹H NMR (500 MHz, CDCl₃): δ = 8.23 (2H, d, *J*= 5 Hz), 7.68 (2H, d, *J*= 10 Hz), 7.62 (1H, t, *J*= 7.5 Hz), 7.51 (2H, t, *J*= 7.5 Hz), 7.47 (1H, d, *J*= 10 Hz), 7.41 (2H, t, *J*= 7.5 Hz). ¹³C NMR (CDCl₃, 125 MHz, ppm) 178.3, 137.0, 133.8, 132.4, 129.8, 128.5, 127.8, 122.1, 96.9, 79.7

² **Compound 7b**. (Yellow solid) ¹H NMR (500 MHz, CDCl₃) $\delta = 8.12$ (2H, d, J= 10 Hz), 7.68 (2H, d, J= 10 Hz), 7.48 (1H, t, J= 7.5 Hz), 7.42 (2H, t, J= 5 Hz), 7.31 (2H, d, J= 10 Hz), 2.45 (3H, s, Me). ¹³C NMR (CDCl₃, 125 MHz, ppm) 177.7, 145.3, 134.6, 133.0, 130.7, 129.7, 129.4, 128.7, 120.3, 92.6, 87.0, 21.9.

² **Compound 7c**. (Yellow solid) ¹H NMR (300 MHz, CDCl₃): δ= 8.20 (2H, d, *J*= 6 Hz), 7.68 (2H, d, *J*= 6 Hz), 7.48- 7.39(3H, m), 6.99 (2H, d, *J*= 9 Hz), 3.93 (3H, s, OMe). ¹³C NMR (CDCl₃, 125 MHz, ppm) 176.7, 164.5, 133.0, 132.3, 132.0, 130.6, 130.3, 128.7, 113.9, 92.3, 86.9, 55.6.

³ **Compound 7d**. (yellow solid) ¹H NMR (300 MHz, CDCl₃): δ =7.66 (2H, d, *J*= 9 Hz), 7.50 (2H,s), 7.47-7.40 (3H, m), 3.96 (9H,s, OMe). ¹³C NMR (CDCl₃, 125 MHz, ppm) 177.0, 153.2, 143.7, 133.1, 132.3, 130.9, 128.9, 120.2, 107.0, 93.0, 86.9, 68.1, 61.2, 56.4.

² **Compound 7e**. (Yellow solid) ¹H NMR (500 MHz, CDCl₃): δ = 8.38 (4 H, s), 7.71 (2H, d, *J*= 5 Hz), 7. 54 (1H, t, *J*= 7.5 Hz), 7.46 (2H, t, *J*= 7.5 Hz). ¹³C NMR (CDCl₃, 125 MHz, ppm) 175.9, 150.9, 141.0, 133.3, 131.5, 130.4, 128.9, 123.9, 119.4, 95.4, 86.5. ² Compound 7f. (Yellow solid) ¹H NMR (300 MHz, CDCl₃): δ = 8.09 (2H, d, *J*= 6 Hz), 7.87-7.80 (2H, m), 7.67-7.64 (2H, m), 7.49-7.42 (3H, m). ¹³C NMR (CDCl₃, 125 MHz, ppm) 189.2, 174.7, 146.6, 141.5, 132.5, 131.2, 129.1, 128.9, 128.7, 121.2, 118.0, 116.0, 96.8, 85.0.
² Compound 7g. (Yellow oil) ¹H NMR (500 MHz, CDCl₃): δ = 8.01 (1H, d, *J*= 5Hz), 7.73 (1H, d, *J*= 5Hz), 7.66 (2H, d, *J*= 10Hz), 7.48 (1H, t, *J* = 7.5 Hz), 7.42 (1H, t, *J* = 7.5 Hz), 7.19 (1H, t, *J* = 5Hz). ¹³C NMR (CDCl₃, 125 MHz, ppm) 169.8, 145.0, 135.2, 135.1, 133.0, 130.9, 128.7, 128.3, 120.0, 91.8, 86.5.

¹ **Compound 7h**. (Yellow solid) ¹H NMR (500 MHz, CDCl₃): δ = 9.24 (1H, d, *J*= 10Hz), 8.65 (1H, d, *J*= 10Hz), 8.11 (1H, d, *J*= 5Hz), 7.92 (1H, d, *J*= 10Hz),7.69 (3H, t, *J*= 10Hz), 7.63-7.57 (2H, m),7.49 (1H, t, *J*= 7.5Hz), 7.43 (2H, t, *J*= 7.5Hz). ¹³C NMR (CDCl₃, 125 MHz, ppm) 179.8, 135.1, 134.5, 133.9, 133.0, 133.0, 130.8, 130.6, 129.0, 128.7, 128.6, 126.8, 126.0, 124.5, 120.4, 91.7, 88.5.

² **Compound 8b**. (Colourless liquid) ¹H NMR (500 MHz, CDCl₃): δ = 8.15 (2H, d, *J* = 5Hz) 7.62 (1H, t, *J* = 7.5 Hz), 7.49 (2H, t, *J* = 7.5 Hz), 0.32 (9H, s, TMS). ¹³C NMR (CDCl₃ 125 MHz, ppm) 174.7, 135.0, 134.5, 129.0, 128.8, 120.3, 80.0, 3.8

⁶ **Compound 8c**. (Colourless liquid) ¹H NMR (300 MHz, CDCl₃): δ = 8.12 (2H, d, *J* = 6.0 Hz), 7.58 (1H, t, *J* = 7.5 Hz), 7.46 (2H, t, *J* = 7.5 Hz), 2.49 (2H, t, *J* = 7.5 Hz), 1.69-1.60 (2H m), 1.55-1.45 (2H, m), 0.94 (3H, t, *J* = 7.5 Hz). ¹³C NMR (CDCl₃, 125 MHz, ppm) 178.3, 137.0, 133.8, 129.5, 128.5, 96.9, 79.7, 29.9, 22.1, 18.9, 13.5.

Compound 8d. (Light yellow solid) ¹H NMR (300 MHz, CDCl₃): δ = 8.22 (2 H, d, *J* = 9.0 Hz) 7.67-7.61 (3H m), 7.52 (2H, t, *J* = 7.5 Hz), 6.94 (2H,t, *J* = 9.0 Hz), 3.87 (3H, s). ¹³C NMR (CDCl₃ 125 MHz, ppm) 178.2, 141.7, 137.1, 134.1, 133.2, 129.7, 129.6. 128.7, 117.1, 94.0, 86.9, 21.9.

Compound 8e. (Dark yellow solid) ¹H NMR (500 MHz, CDCl₃): $\delta = 8.22$ (2 H, d, J = 10.0Hz) 7.62 (1H, t, J = 10 Hz), 7.58 (2H, d, J = 5.0 Hz), 7.51 (2 H, t, J = 7.5Hz), 7.23 (2H, d, J = 10 Hz), 2.40 (3H, s). ¹³C NMR (CDCl₃, 125 MHz, ppm) 178.2, 161.8, 137.1, 135.3, 134.0, 129.6, 128.7, 114.5, 112.0, 94.4, 87.0, 55.5.

Fig. S17a The ¹H NMR spectrum of compound 7a in CDCl₃.

Fig. S17b The ¹³C NMR spectrum of compound 7a in CDCl₃.

Fig. S18a The ¹H NMR spectrum of compound 7b in CDCl₃.

Fig. S19a The ¹H NMR spectrum of compound 7c in CDCl₃.

Fig. S20a The ¹H NMR spectrum of compound 7d in CDCl₃.

Fig. S20b The ¹H NMR spectrum of compound 7d in CDCl₃.

11.5 10.5 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 Fig. S21a The ¹H NMR spectrum of compound 7e in $CDCl_3$.

Fig. S21b The ¹H NMR spectrum of compound 7e in CDCl₃

Fig. S22a The ¹H NMR spectrum of compound 7f in CDCl₃.

Fig. S23b The ¹³C NMR spectrum of compound 7g in CDCl₃.

Fig. S24a The ¹H NMR spectrum of compound 7h in CDCl₃.

Fig. S24b The ¹H NMR spectrum of compound 7h in CDCl₃.

Fig. S25a The ¹H NMR spectrum of compound 8b in CDCl₃.

Fig. S25b The ¹H NMR spectrum of compound 8b in CDCl₃.

Fig. S26a The ¹H NMR spectrum of compound 8c in CDCl₃.

Fig. S27b The ¹H NMR spectrum of compound 8d in CDCl₃.

Entry	Catalyst loading	Time (h)	Yield (%)
1	4 μmol	24	78
2	2μmol	28	74
3	1µmol	30	72

Table S3: Catalytic efficiency of supramolecular polymer 4:ZnO NPs for photocatalytic for

dehydrogenative coupling reaction of benzaldehyde and phenylacetylene.

 $\begin{array}{c} 90\\ 80\\ 70\\ 60\\ 50\\ 40\\ 20\\ 10\\ 0 \end{array}$

Fig. S29 Recyclability of supramolecular polymer 4:ZnO NPs catalyst for dehydrogenative coupling reaction.

Fig. S30 Atomic absorption Studies (AAS) of the residual liquid left after the after the recycling of the catalyst and found that only 0.2258 mg/lit = 0.2258 ppm of zinc leached into the solution.

Fig. S31 A plausible reaction mechanism for ZnO NPs catalyzed dehydrogenative coupling.

Catalytic NMR References

¹C. Tana, P. Wanga, H. Liua, X. Zhaoa, Y. Lua and Y. Liua, *Chem-comun.*, 2015, *51*, 10871-10874.

²Y. Ogiwara, M. Kubota, K. Kurogi, T. Konakahara and N. Sakai, *Chem. Eur. J.*, 2015, *21*, 18598 – 18600.

³ M. L. Edwards, D. M. Stemerick and P. S. Sunkara, J. Med. Chem., 1990, 33, 1948-1954.

⁴ X. Wu, H. Neumann and M. Beller, Chem. Eur. J., 2010, 16, 12104 – 12107.

⁵ D. K. Friel, M. L. Snapper and A. H. Hoveyda, *J. AM. CHEM. SOC.*, 2008, *130*, 9942–9951.

⁶K. Okamoto, T. Shimbayashi, E. Tamura and K. Ohe, Org. Lett., 2015, 17, 5843–5845.

⁷ R.Y. Zhang, L.Y. Xi, L. Zhang, S.Y. Chen, X.Q. Yu. *Tetrahedron*. 2015, 71, 6176.

Fig S32a: ¹H NMR of phenyl methanol.

Fig S32b: ¹³C NMR of phenyl methanol.