Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Electronic Supplementary Information (ESI) for the article entitled:

"New coordination polymers based on 2-methylimidazole and transition metal nitroprussides containing building blocks: Synthesis, structure and magnetic properties"

by A. Di Santo¹, H. Osiry², E. Reguera², P. Alborés^{3,+}, R.E. Carbonio^{4,+}, A. Ben Altabef^{1,+}, Diego M. Gil^{1,*,+}.

Figure S1: Rietveld refinement of powder XRD pattern for Mn(2-MeIm)₂[Fe(CN)₅NO]. Red points: experimental data. Black line: calculated profile. Blue vertical lines: allowed Bragg positions. Blue line: difference between experimental and calculated profiles.

Figure S2: Rietveld refinement of powder XRD pattern for Fe(2-MeIm)₂[Fe(CN)₅NO]. Red points: experimental data. Black line: calculated profile. Blue vertical lines: allowed Bragg positions. Blue line: difference between experimental and calculated profiles.

Figure S3: Rietveld refinement of powder XRD pattern for Co(2-MeIm)₂[Fe(CN)₅NO]. Red points: experimental data. Black line: calculated profile. Blue vertical lines: allowed Bragg positions. Blue line: difference between experimental and calculated profiles.

Figure S4: Diffuse reflectance UV-Vis spectra of the solids intercalated T(2-MeIm)₂[Fe(CN)₅NO]·2H₂O (T= Mn, Ni, Co and Fe).

Figure S5: TG and DTA curves for the thermal decomposition of $Mn(2-MeIm)_2[Fe(CN)_5NO]$ in air.

Figure S6: TG and DTA curves for the thermal decomposition of $Mn(2-Melm)_2[Fe(CN)_5NO]\cdot 2H_2O$ in air.

Figure S7: TG and DTA curves for the thermal decomposition of Co(2-MeIm) $_2$ [Fe(CN) $_5$ NO]·2H $_2$ O in air.

Figure S8: TG and DTA curves for the thermal decomposition of Ni(2-Melm)₂[Fe(CN)₅NO]·2H₂O in air.

Figure S9: χ^1 vs *T* plots for all reported complexes at 80 Oe. Full lines correspond to the Curie-Weiss fitting.

Figure S10: *M* vs *H* plots in the range -70 -70 kOe applied field for all reported complexes at 1.8 K.

Atom	Wyck.	x	У	Z	Uiso*/Ueq
Fe	4a	0.0032 (8)	0.9974 (2)	0.2211 (2)	0.036 (1)
Mn	4a	0.0008 (4)	0.7476 (2)	0.7351 (3)	0.036 (1)
C1	4a	0.0006 (9)	0.9042 (5)	0.4006 (8)	0.047 (2)
C2	4a	-0.0061 (6)	1.0904 (5)	0.0431 (8)	0.047 (2)
C3	4a	0.0003 (9)	1.0897 (5)	0.4024 (8)	0.047 (2)
C4	4a	-0.0059 (6)	0.9050 (6)	0.0414 (9)	0.047 (2)
C5	4a	-0.0971 (1)	0.997 (1)	0.233 (1)	0.047 (2)
C6	4a	0.1600 (1)	0.8292 (5)	0.732 (2)	0.047 (2)
C7	4a	0.2319 (1)	0.7210 (5)	0.791 (2)	0.047 (2)
C8	4a	0.1667 (1)	0.6889 (4)	0.791 (2)	0.047 (2)
C9	4a	0.1322 (2)	0.9177 (5)	0.687 (1)	0.047 (2)
C10	4a	-0.1589 (1)	0.8178 (5)	0.732 (2)	0.047 (2)
C11	4a	-0.2275 (2)	0.7025 (6)	0.724 (2)	0.047 (2)
C12	4a	-0.1609 (1)	0.6745 (5)	0.726 (2)	0.047 (2)
C13	4a	-0.1338 (1)	0.9102 (4)	0.740 (2)	0.047 (2)
N1	4a	0.0033 (8)	0.8511 (5)	0.5086 (7)	0.047 (2)
N2	4a	-0.0102 (8)	1.1433 (4)	-0.0677 (7)	0.047 (2)
N3	4a	0.0013 (5)	1.1434 (5)	0.5105 (8)	0.047 (2)
N4	4a	-0.0086 (8)	0.8550 (4)	-0.0740 (6)	0.047 (2)
N5	4a	-0.1570 (1)	0.997 (1)	0.240 (1)	0.047 (2)
N6	4a	0.0895 (1)	0.997 (1)	0.210 (8)	0.047 (2)
N7	4a	0.1200 (1)	0.7564 (8)	0.754 (2)	0.047 (2)
N8	4a	0.2286 (2)	0.8107 (4)	0.753 (2)	0.047 (2)
N9	4a	-0.1164 (1)	0.7465 (9)	0.730 (1)	0.047 (2)
N10	4a	-0.2270 (2)	0.7940 (4)	0.729 (1)	0.047 (2)
01	4a	0.1483 (9)	0.9976 (9)	0.2031 (7)	0.047 (2)
02	4a	-0.1254 (1)	1.2070 (3)	0.2023 (8)	0.149 (1)
03	4a	0.3726 (1)	0.7508 (6)	0.777 (1)	0.149 (1)

Table S1: Atomic coordinates and equivalent isotropic displacement parameters for $Mn(2-Im)_2[Fe(CN)_5NO]\cdot 2H_2O$.

Bond distances (Å)					
Fe—C1	1.930 (7)	C4—N4	1.137 (9)		
Fe—C2	1.928 (7)	C5—N5	1.149 (3)		
Fe—C3	1.929 (7)	N6-01	1.128 (18)		
Fe—C4	1.930 (9)	N7—C6	1.351 (12)		
Fe—C5	1.924 (15)	N7—C8	1.385 (11)		
Fe—N6	1.656 (16)	C6—N8	1.353 (5)		
Mn—N1	2.284 (7)	N8—C7	1.387 (10)		
Mn—N2 ⁱ	2.008 (7)	C7—C8	1.341 (4)		
Mn—N3 ⁱⁱ	2.444 (7)	C6—C9	1.478 (10)		
Mn—N4 ⁱⁱⁱ	2.153 (6)	N9-C10	1.352 (13)		
Mn—N7	2.293 (8)	N9-C12	1.384 (12)		
Mn—N9	2.247 (8)	C10-N10	1.354 (5)		
C1—N1	1.130 (9)	N10-C11	1.384 (11)		
C2—N2	1.144 (9)	C11—C12	1.345 (6)		
C3—N3	1.136 (10)	C10-C13	1.479 (9)		
Bond Angles (°)					
Fe—C1—N1	175.6 (8)	Mn–N2 ⁱ –C2 ⁱ	168.2 (8)		
Fe—C2—N2	177.1 (7)	Mn—N3 ⁱⁱ —C3 ⁱⁱ	174.2 (7)		
Fe—C3—N3	177.3 (8)	Mn—N4 ⁱⁱⁱ —C4 ⁱⁱⁱ	169.5 (8)		
Fe—C4—N4	174.5 (7)	Mn—N7—C6	127.3 (7)		
Fe—C5—N5	179.8 (13)	Mn—N7—C8	127.8 (7)		
Fe—N6—O1	179 (6)	Mn-N9-C10	126.6 (7)		
C1—Fe—C2	173.2 (7)	Mn—N9—C12	128.5 (7)		
C1—Fe—C3	93.3 (6)	N1—Mn—N2 ⁱ	95.2 (5)		
C1—Fe—C4	86.3 (5)	N1—Mn—N3 ⁱⁱ	176.9 (5)		
C1—Fe—C5	86.6 (8)	N1—Mn—N4 ⁱⁱⁱ	87.6 (3)		
C1—Fe—N6	93.3 (17)	N1—Mn—N7	89.0 (6)		
C2—Fe—C3	86.4 (5)	N1-Mn-N9	90.8 (6)		
C2—Fe—C4	93.3 (6)	N2 ⁱ —Mn—N3 ⁱⁱ	87.8 (4)		
C2—Fe—C5	86.6 (7)	N2 ⁱ —Mn—N4 ⁱⁱⁱ	177.1 (5)		
C2—Fe—N6	93.5 (15)	N2 ⁱ —Mn—N7	89.6 (6)		
C3—Fe—C4	173.2 (7)	N2 ⁱ —Mn—N9	94.2 (6)		
C3—Fe—C5	86.7 (8)	N3 ⁱⁱ —Mn—N4 ⁱⁱⁱ	89.3 (4)		
C3—Fe—N6	93.7 (17)	N3 ⁱⁱ —Mn—N7	90.4 (5)		
C4—Fe—C5	86.5 (8)	N3 ⁱⁱ —Mn—N9	89.5 (5)		
C4—Fe—N6	93.1 (16)	N4 ⁱⁱⁱ —Mn—N7	90.0 (6)		
C5—Fe—N6	179.6 (8)	N4 ⁱⁱⁱ —Mn—N9	86.1 (6)		
Mn-N1-C1	175.6 (7)	N7—Mn—N9	176.2 (3)		

Table S2: Selected bond lengths (Å) and bond angle (°) for $Mn(2-MIm)_2[Fe(CN)_5NO] \cdot 2H_2O$.

Table S3: Hydrogen bond distances (Å) for $Mn(2-MIm)_2[Fe(CN)_5NO] \cdot 2H_2O.$

D—H…A	D…A
02…N10 ^{iV}	2.835 (4)
O3…N8	2.910 (5)

Atom	Wyck.	х	у	Z	Uiso*/Ueq
Fe1	4a	0.0033 (2)	0.9978 (2)	0.2212 (2)	0.037(1)
Fe2	4a	0.0012 (5)	0.7438 (2)	0.7570 (6)	0.037(1)
C1	4a	0.0045 (2)	0.9026 (4)	0.4006 (7)	0.050(3)
C2	4a	-0.006 (1)	1.0918 (4)	0.0410 (8)	0.050(3)
C3	4a	0.0005 (2)	1.0911 (4)	0.4048 (6)	0.050(3)
C4	4a	-0.0020 (1)	0.9037 (4)	0.0406 (8)	0.050(3)
C5	4a	-0.0976 (2)	0.997 (1)	0.233 (1)	0.050(3)
C6	4a	0.1627 (2)	0.8185 (5)	0.754 (2)	0.050(3)
C7	4a	0.2317 (3)	0.7020 (4)	0.754 (2)	0.050(3)
C8	4a	0.1648 (2)	0.6736 (5)	0.754 (2)	0.050(3)
C9	4a	0.1376 (2)	0.9118 (4)	0.750 (2)	0.050(3)
C10	4a	-0.1582 (2)	0.8185 (5)	0.752 (2)	0.050(3)
C11	4a	-0.2273 (3)	0.7021 (5)	0.744 (3)	0.050(3)
C12	4a	-0.1603 (2)	0.6738 (5)	0.746 (2)	0.050(3)
C13	4a	-0.1329 (2)	0.9118 (4)	0.760 (2)	0.050(3)
N1	4a	-0.0004 (8)	0.8508 (4)	0.5137 (7)	0.050(3)
N2	4a	-0.0094 (7)	1.1468 (4)	-0.0654 (5)	0.050(3)
N3	4a	0.002 (1)	1.1447 (4)	0.5165 (7)	0.050(3)
N4	4a	0.0012 (9)	0.8451 (3)	-0.0585 (6)	0.050(3)
N5	4a	-0.1580 (2)	0.997 (1)	0.241 (1)	0.050(3)
N6	4a	0.0903 (2)	0.998 (1)	0.210 (8)	0.050(3)
N7	4a	0.1200 (2)	0.7464 (9)	0.754 (3)	0.050(3)
N8	4a	0.2313 (2)	0.7945 (4)	0.754 (2)	0.050(3)
N9	4a	-0.1155 (2)	0.7465 (9)	0.750 (3)	0.050(3)
N10	4a	-0.2268 (2)	0.7945 (4)	0.749 (2)	0.050(3)
01	4a	0.1495 (1)	0.9981 (9)	0.2030 (7)	0.050(3)
02	4a	-0.1261 (5)	1.2075 (2)	0.213 (1)	0.125(6)
03	4a	0.3690 (4)	0.7505 (5)	0.7616 (2)	0.125(6)

Bond distances (Å)				
Fe1—C1	1.930 (6)	C4—N4	1.136 (7)	
Fe1—C2	1.929 (7)	C5—N5	1.151 (5)	
Fe1—C3	1.931 (6)	N6-01	1.128 (5)	
Fe1—C4	1.926 (6)	N7—C6	1.351 (13)	
Fe1—C5	1.922 (5)	N7—C8	1.384 (13)	
Fe1—N6	1.657 (6)	C6—N8	1.354 (6)	
Fe2—N1	2.383 (7)	N8—C7	1.385 (8)	
Fe2—N2 ⁱ	2.016 (7)	С7—С8	1.342 (7)	
Fe2—N3 ⁱⁱ	2.214 (7)	C6—C9	1.477 (9)	
Fe2—N4 ⁱⁱⁱ	2.023 (6)	N9-C10	1.350 (13)	
Fe2—N7	2.261 (10)	N9-C12	1.383 (13)	
Fe2—N9	2.221 (10)	C10-N10	1.354 (6)	
C1—N1	1.133 (8)	N10-C11	1.384 (10)	
C2—N2	1.130 (8)	C11-C12	1.344 (7)	
C3—N3	1.141 (8)	C10—C13	1.479 (9)	
Bond Angles (°)				
Fe1—C1—N1	173.2 (7)	Fe1—N2 ⁱ —C2 ⁱ	172.3 (7)	
Fe1—C2—N2	178.0 (6)	Fe1—N3 ⁱⁱ —C3 ⁱⁱ	176.0 (6)	
Fe1—C3—N3	176.6 (6)	Fe1—N4 ⁱⁱⁱ —C4 ⁱⁱⁱ	176.0 (6)	
Fe1—C4—N4	172.9 (6)	Fe1—N7—C6	127.9 (9)	
Fe1—C5—N5	179.5 (5)	Fe1—N7—C8	127.0 (8)	
Fe1—N6—O1	179.8 (5)	Fe1—N9—C10	128.0 (9)	
C1—Fe1—C2	175.4 (6)	Fe1—N9—C12	127.0 (8)	
C1—Fe1—C3	94.0 (4)	N1—Fe2—N2 ⁱ	88.6 (4)	
C1—Fe1—C4	85.3 (4)	N1—Fe2—N3 ⁱⁱ	177.7 (5)	
C1—Fe1—C5	88.7 (5)	N1—Fe2—N4 ⁱⁱⁱ	89.1 (3)	
C1—Fe1—N6	91.3 (15)	N1—Fe2—N7	89.7 (7)	
C2—Fe1—C3	86.3 (4)	N1—Fe2—N9	87.6 (7)	
C2—Fe1—C4	94.0 (5)	N2 ⁱ —Fe2—N3 ⁱⁱ	91.7 (4)	
C2—Fe1—C5	86.7 (7)	N2 ⁱ —Fe2—N4 ⁱⁱⁱ	175.0 (5)	
C2—Fe1—N6	93.3 (15)	N2 ⁱ —Fe2—N7	85.9 (7)	
C3—Fe1—C4	175.4 (5)	N2 ⁱ —Fe2—N9	94.3 (7)	
C3—Fe1—C5	86.9 (5)	N3 ⁱⁱ —Fe2—N4 ⁱⁱⁱ	90.7 (4)	
C3—Fe1—N6	93.4 (16)	N3 ⁱⁱ —Fe2—N7	92.6 (8)	
C4—Fe1—C5	88.5 (5)	N3 ⁱⁱ —Fe2—N9	90.1 (5)	
C4—Fe1—N6	91.2 (14)	N4 ⁱⁱⁱ —Fe2—N7	89.6 (7)	
C5—Fe1—N6	179.6 (5)	N4 ⁱⁱⁱ —Fe2—N9	90.1 (8)	
Fe1—N1—C1	174.4 (7)	N7—Fe2—N9	177.2 (5)	

Table S5: Selected bond angle (°) for $Fe(2-MIm)_2[Fe(CN)_5NO] \cdot 2H_2O$.

Table S6: Hydrogen bond distances (Å) for Fe(2-MIm)₂[Fe(CN)₅NO]·2H₂O.

D—H···A	D···A
02…N10 ^{iV}	2.811 (1)
O3…N8	2.702 (8)

Atom	Wyck.	x	У	z	Uiso*/Ueq
Fe	4a	0.0159 (7)	0.9993 (2)	0.249 (1)	0.035 (2)
Со	4a	0.0063 (1)	0.7431 (2)	0.7362 (3)	0.035 (2)
C1	4a	0.0153 (6)	0.9058 (6)	0.4373 (8)	0.046 (3)
C2	4a	0.0048 (6)	1.0922 (6)	0.0642 (8)	0.046 (3)
C3	4a	0.0163 (5)	1.0949 (6)	0.4307 (8)	0.046 (3)
C4	4a	0.0032 (7)	0.9035 (6)	0.0697 (7)	0.046 (3)
C5	4a	-0.0850 (2)	1.000 (1)	0.271 (2)	0.046 (3)
C6	4a	0.1664 (3)	0.8199 (5)	0.762 (2)	0.046 (3)
C7	4a	0.2359 (4)	0.7036 (5)	0.784 (1)	0.046 (3)
C8	4a	0.1693 (3)	0.6744 (5)	0.772 (2)	0.046 (3)
C9	4a	0.1427 (2)	0.9165 (5)	0.754 (3)	0.046 (3)
C10	4a	-0.1480 (2)	0.8254 (5)	0.731 (2)	0.046 (3)
C11	4a	-0.2256 (4)	0.7172 (6)	0.732 (2)	0.046 (3)
C12	4a	-0.1608 (3)	0.6809 (5)	0.733 (2)	0.046 (3)
C13	4a	-0.1179 (2)	0.9207 (4)	0.729 (2)	0.046 (3)
N1	4a	0.0177 (5)	0.8493 (5)	0.5438 (7)	0.046 (3)
N2	4a	-0.0066 (6)	1.1501 (5)	-0.0338 (7)	0.046 (3)
N3	4a	0.0165 (5)	1.1493 (5)	0.5419 (7)	0.046 (3)
N4	4a	-0.0045 (6)	0.8446 (5)	-0.0298 (6)	0.046 (3)
N5	4a	-0.1454 (2)	1.001 (1)	0.2847 (9)	0.046 (3)
N6	4a	0.1027 (2)	0.998 (1)	0.230 (1)	0.046 (3)
N7	4a	0.1241 (2)	0.7470 (7)	0.758 (2)	0.046 (3)
N8	4a	0.2351 (3)	0.7966 (4)	0.7776 (1)	0.046 (3)
N9	4a	-0.1108 (2)	0.7483 (7)	0.732 (2)	0.046 (3)
N10	4a	-0.2182 (3)	0.8096 (4)	0.732 (2)	0.046 (3)
01	4a	0.1619 (2)	0.9972 (9)	0.2170 (8)	0.046 (3)
02	4a	-0.1207 (3)	1.2096 (4)	0.1927 (9)	0.155 (8)
03	4a	0.3732 (1)	0.7513 (4)	0.7650 (8)	0.155 (8)

Table S7: Atomic coordinates and equivalent isotropic displacement parameters for Co(2- $Im)_2[Fe(CN)_5NO]\cdot 2H_2O$

Bond distances (Å)				
Fe—C1	1.941 (9)	C4—N4	1.141 (10)	
Fe—C2	1.929 (9)	C5—N5	1.152 (6)	
Fe—C3	1.931 (9)	N6-01	1.129 (5)	
Fe—C4	1.937 (9)	N7—C6	1.352 (11)	
Fe—C5	1.924 (14)	N7—C8	1.385 (11)	
Fe—N6	1.655 (14)	C6—N8	1.355 (8)	
Co-N1	2.112 (7)	N8—C7	1.387 (10)	
Co—N2 ⁱ	2.008 (7)	С7—С8	1.341 (10)	
Co—N3 ⁱⁱ	2.163 (7)	C6—C9	1.509 (10)	
Co—N4 ⁱⁱⁱ	2.270 (7)	N9-C10	1.349 (11)	
Co—N7	2.244 (4)	N9-C12	1.382 (10)	
Co—N9	2.226 (4)	C10-N10	1.354 (7)	
C1—N1	1.138 (10)	N10-C11	1.384 (11)	
C2—N2	1.134 (11)	C11-C12	1.345 (10)	
C3—N3	1.138 (10)	C10-C13	1.531 (9)	
Bond Angles (°)				
Fe—C1—N1	176.8 (9)	Co-N2 ⁱ -C2 ⁱ	166.8 (8)	
Fe—C2—N2	173.4 (9)	Co-N3 ⁱⁱ -C3 ⁱⁱ	167.5 (8)	
Fe—C3—N3	177.9 (9)	Co-N4 ⁱⁱⁱ -C4 ⁱⁱⁱ	164.6 (8)	
Fe—C4—N4	177.1 (9)	Co-N7-C6	128.0 (6)	
Fe—C5—N5	179.5 (12)	Co-N7-C8	127.1 (6)	
Fe—N6—O1	179.9 (13)	Co-N9-C10	123.6 (6)	
C1—Fe—C2	173.4 (7)	Co-N9-C12	131.4 (6)	
C1—Fe—C3	93.4 (7)	N1-Co-N2 ⁱ	92.5 (5)	
C1—Fe—C4	86.2 (5)	N1-Co-N3 ⁱⁱ	170.6 (6)	
C1—Fe—C5	86.6 (8)	N1—Co—N4 ⁱⁱⁱ	89.7 (4)	
C1—Fe—N6	93.1 (8)	N1-Co-N7	85.6 (5)	
C2—Fe—C3	86.3 (5)	N1-Co-N9	93.9 (5)	
C2—Fe—C4	93.3 (7)	N2 ⁱ —Co—N3 ⁱⁱ	95.0 (4)	
C2—Fe—C5	86.8 (8)	N2 ⁱ —Co—N4 ⁱⁱⁱ	174.7 (5)	
C2—Fe—N6	93.5 (8)	N2 ⁱ —Co—N7	93.8 (6)	
C3—Fe—C4	173.1 (7)	N2 ⁱ —Co—N9	91.0 (6)	
C3—Fe—C5	86.8 (7)	N3"—Co—N4"	82.4 (4)	
C3—Fe—N6	93.5 (8)	N3 ⁱⁱ —Co—N7	99.5 (5)	
C4—Fe—C5	86.2 (8)	N3 ⁱⁱ —Co—N9	80.3 (5)	
C4—Fe—N6	93.5 (9)	N4 ⁱⁱⁱ —Co—N7	91.2 (5)	
C5—Fe—N6	179.6 (7)	N4 ⁱⁱⁱ —Co—N9	84.1 (5)	
Co-N1-C1	171.7 (8)	N7—Co—N9	175.3 (3)	

Table S8: Selected bond lengths (Å) and bond angle (°) for $Co(2-MIm)_2[Fe(CN)_5NO] \cdot 2H_2O$.

Table S9: Hydrogen bond distances (Å) for $Co(2-MIm)_2[Fe(CN)_5NO] \cdot 2H_2O$.

D—H···A	D····A
02…N10 ^{iV}	3.087 (8)
O3…N8	2.710 (6)

Atom	Wyck.	x	у	Z	Uiso*/Ueq
Fe	4a	0.002 (1)	1.0007 (9)	0.248 (6)	0.036 (7)*
Ni	4a	-0.0083 (1)	0.7506 (9)	0.751 (5)	0.036 (7)*
C1	4a	-0.0006 (5)	0.904 (2)	0.432 (4)	0.057 (1)*
C2	4a	-0.0063 (4)	1.096 (2)	0.067 (4)	0.057 (1)*
C3	4a	0.0035 (5)	1.094 (2)	0.436 (4)	0.057 (1)*
C4	4a	-0.010 (4)	0.906 (2)	0.063 (4)	0.057 (1)*
C5	4a	-0.098 (1)	1.004 (5)	0.268 (9)	0.057 (1)*
C6	4a	0.166 (1)	0.810 (2)	0.762 (1)	0.057 (1)*
C7	4a	0.225 (2)	0.684 (1)	0.768 (8)	0.057 (1)*
C8	4a	0.156 (1)	0.664 (2)	0.764 (9)	0.057 (1)*
C9	4a	0.148 (1)	0.908 (1)	0.756 (9)	0.057 (1)*
C10	4a	-0.163 (1)	0.816 (1)	0.736 (9)	0.057 (1)*
C11	4a	-0.222 (2)	0.689 (2)	0.712 (7)	0.057 (1)*
C12	4a	-0.153 (1)	0.669 (1)	0.716 (8)	0.057 (1)*
C13	4a	-0.145 (1)	0.913 (1)	0.755 (1)	0.057 (1)*
N1	4a	0.000 (3)	0.849 (1)	0.543 (3)	0.057 (1)*
N2	4a	-0.004 (3)	1.151 (1)	-0.047 (3)	0.057 (1)*
N3	4a	0.008 (2)	1.151 (1)	0.544 (3)	0.057 (1)*
N4	4a	-0.014 (2)	0.849 (1)	-0.043 (3)	0.057 (1)*
N5	4a	-0.1589 (9)	1.006 (3)	0.279 (5)	0.057 (1)*
N6	4a	0.0894 (8)	0.997 (3)	0.232 (6)	0.057 (1)*
N7	4a	0.1179 (8)	0.743 (3)	0.761 (8)	0.057 (1)*
N8	4a	0.2326 (9)	0.777 (2)	0.766 (6)	0.057 (1)*
N9	4a	-0.1149 (8)	0.748 (3)	0.730 (7)	0.057 (1)*
N10	4a	-0.229 (1)	0.783 (2)	0.725 (6)	0.057 (1)*
01	4a	0.1485 (7)	0.995 (2)	0.220 (4)	0.057 (1)*
02	4a	-0.1237 (8)	1.209 (1)	0.210 (4)	0.071 (3)*
03	4a	0.3743 (7)	0.752 (3)	0.766 (5)	0.071 (3)*

Table S10:Atomic coordinates and equivalent isotropic displacement parameters for $Mn(2-Im)_2[Fe(CN)_5NO]\cdot 2H_2O$.

	Bond dis	tances (Å)	
Fe—C1	1.94 (4)	C4—N4	1.13 (3)
Fe—C2	1.91 (4)	C5—N5	1.16 (3)
Fe—C3	1.92 (4)	N6-01	1.12 (18)
Fe—C4	1.93 (4)	N7—C6	1.35 (4)
Fe—C5	1.91 (3)	N7—C8	1.37 (5)
Fe—N6	1.67 (2)	C6—N8	1.36 (3)
Ni—N1	2.08 (3)	N8—C7	1.38 (3)
Ni—N2 ⁱ	2.08 (3)	C7—C8	1.34 (4)
Ni—N3 ⁱⁱ	2.07 (3)	C6—C9	1.49 (3)
Ni—N4 ⁱⁱⁱ	2.07 (3)	N9-C10	1.36 (4)
Ni—N7	2.402 (16)	N9—C12	1.38 (4)
Ni—N9	2.031 (16)	C10-N10	1.35 (3)
C1-N1	1.13 (3)	N10-C11	1.40 (4)
C2—N2	1.15 (3)	C11—C12	1.34 (4)
C3—N3	1.14 (3)	C10—C13	1.48 (2)
	Bond A	angles (°)	
Fe—C1—N1	177 (4)	Ni–N2 ⁱ –C2 ⁱ	176 (4)
Fe—C2—N2	173 (4)	Ni—N3 ⁱⁱ —C3 ⁱⁱ	175(4)
Fe—C3—N3	176 (4)	Ni—N4 ⁱⁱⁱ —C4 ⁱⁱⁱ	172 (4)
Fe—C4—N4	177 (4)	Ni—N7—C6	130 (2)
Fe—C5—N5	180(3)	Ni—N7—C8	125 (2)
Fe—N6—O1	179 (2)	Ni-N9-C10	131 (2)
C1—Fe—C2	174 (3)	Ni-N9-C12	123 (2)
C1—Fe—C3	93 (3)	N1—Ni—N2 ⁱ	89.3 (5)
C1—Fe—C4	86 (2)	N1—Ni—N3 ⁱⁱ	175.4 (19)
C1—Fe—C5	87 (3)	N1—Ni—N4 ⁱⁱⁱ	91.1 (18)
C1—Fe—N6	93 (2)	N1—Ni—N7	89 (2)
C2—Fe—C3	87 (2)	N1—Ni—N9	92 (2)
C2—Fe—C4	94 (3)	N2 ⁱ —Ni—N3 ⁱⁱ	89.5 (17)
C2—Fe—C5	87 (3)	N2 ⁱ —Ni—N4 ⁱⁱⁱ	176.5 (19)
C2—Fe—N6	93 (2)	N2 ⁱ —Ni—N7	83 (2)
C3—Fe—C4	174 (3)	N2 ⁱ —Ni—N9	93 (2)
C3—Fe—C5	87(3)	N3 ⁱⁱ —Ni—N4 ⁱⁱⁱ	89.9 (15)
C3—Fe—N6	93 (3)	N3 ⁱⁱ —Ni—N7	86.7 (19)
C4—Fe—C5	87 (3)	N3 ⁱⁱ —Ni—N9	92 (2)
C4—Fe—N6	93 (3)	N4 ⁱⁱⁱ —Ni—N7	94 (2)
C5—Fe—N6	179.6 (8)	N4 ⁱⁱⁱ —Ni—N9	91 (2)
Ni-N1-C1	175 (4)	N7—Ni—N9	175.5 (13)

Table S11: Selected bond lengths (Å) and bond angle (°) for Ni(2-MIm)₂[Fe(CN)₅NO]·2H₂O.

Table S12: Hydrogen bond distances (Å) for $Ni(2-MIm)_2[Fe(CN)_5NO] \cdot 2H_2O$.

D—H···A	D…A
02…N10 ^{iV}	2.80 (2)
03…N8	2.71 (2)

2-Melm		Co(2-MeIm)₂NP		Ni(2-MeIm) ₂ NP		Mn(2-MeIm)₂NP		Fe(2-MeIm) ₂ NP		Assignment ^b
FT-IR ^a	Raman	FT-IR	Raman	FT-IR	Raman	FT-IR	Raman	FT-IR	Raman	
-	-	3646	-	3643	-	3652	-	3647	-	vH2O
-	-	3567	-	3566		3570		3568	-	vNH
3137 s	-	3150 vw	3154	3153 vw	3258	3147 vw	3147	3150 vw	-	vCH
3110 vs	-	3125 s	3126	3127 s	3130	3123 s	3124	3125 s	-	vCH
2961 vs	2957	2964 vw	-	2965 vw	-	2966 vw	-	2962 vw	-	vaCH₃
2926 vs	2925	2931 w	2931	2931 w	2931	2931w	2931	2930 w	2930	vsCH ₃
-	-	-	2192	-	2197	-	2184	-	2186	vCN _{eq}
-	-	2180 vs	2179	2185 vs	2188	2173 vs	-	2174 vs	2179	vCN _{eq}
-	-	2165 w	2163	2165 w	2165	-	2160	2164 w	2161	vCN _{ax}
-	-	1936 vs	-	1937 vs	-	1934 vs	-	1935 vs	-	vNO
-	-	1604	-	1605	-	1605	-	1606	-	δH ₂ O
1597 vs	-	1569 m	-	1568 m	-	1569 m	-	1566 m		vC- N +vC-C
1445 s	1446	1431 w	-	1433 w	-	1433 w	-	1433 w	-	δaCH ₃
1411 w	1416	1405 vw	-	1406 vw	1403	1404 vw	-	1405 vw	-	vC-N+vC-C
1373 vs	1370	1362 m	1360	1360 m	1360	1361 m	1358	1361 m	1358	δsCH₃
1303 vs	1303	1290 w	-	1290 w	-	1289 w	-	1291 w	-	νC- N + δC-H +δN-H
1219 s	-	-	-	-	-	-	-	1193	-	νC- N +δC-H +δN-H
1155 vs	1163	1151 w	-	1154 w	-	1150 w	-	1149 w	-	νC- N + δC-H +νC-C
-	-	1139 s		1141 s		1135 s		1137 s		vC- N
1115 vs	1126	1118 m	-	1122 m		1116 m	-	1118 m	-	vC-C + δC-H
1048 w	-	1054 vvw	-	1052 vvw	-	1048 vvw	-	1048 vvw	-	δC-H + δN-H
995 s	993	1016 m	1010	1012 m	1011	1008 m	1008	1010 m	-	ρCH₃
945 s	939	977 vvs	-	976 vvs	-	975 vvs	-	976 vvs	-	vC- N +δC-H + ρCH ₃
916 s	916	875 s	-	873 s	-	871 s	-	875 s	-	δring
-	840	-	-	-	-	-	-	-	-	үСН
743 vs	-	780 m	-	779 m	-	777 m	-	780 m	-	үСН
682 vs	682	681 s	681	681 s	683	680 s	678	680 s	680	γRing

Table S13: IR and Raman bands and tentative assignments for the intercalated solids T(2-MeIm)₂[Fe(CN)₅NO]·2H₂O (T= Co, Ni, Mn and Fe).

-	-	667 m	-	667 m	665	667 m	665	667 m	-	δ FeNO
-	-	644 w	644	643 w	643	645 w	641	645 w	642	v Fe-N
629 s	629	631 vvs	-	γ Ring						
-	-	516 s	-	517 s	-	513 s	509	513 s	-	δFeCN _{eq+ax}
-	479	478 vvs	478	-	479	479 vvs	477	482 vvs	483	γNH
-	-	446 vs	-	443 vs	-	-	447	441 vs	-	v Fe-C _{eq A`+A"}
-	-	427 s	427	426 s	424	421 s	421	424 s	423	vFe-C _{eq A`}
	269									τ Ring
-	-	-	230	-	249	-	191	-	239	v M-N (Im)
-	-	-	203	-	217	-	-	-	210	v M-N(CN)
-	68	-	145	-	153	-	140	-	130	τCH ₃

^a IR intensities; s: strong, m: medium, w: weak, v: very

^bv: stretching, δ : bending, γ out-of-plane bending modes; a: anti-symmetric, s: symmetric