Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Supplementary Material

Fig. S1 Schematic diagram of experimental apparatus for the PCO of NO.

Fig. S2 Schematic diagram of experimental groups (a-d) and the control group (e-f) in the trapping

experiment.

Fig. S3 XRD of as-prepared pure CIS.

Fig. S4 SEM images of as-prepared CIS (a) along with EDS layered image (b), Ca (c), In (d), S (e) EDS mapping; EDS spectrum extracted from the map data (k).

Fig. S5 SEM images of as-prepared APO.

Fig. S6 The derived plots of transformed Kubelka–Munk function of as-prepared CIS (a), APO (b), 10%-CIS/APO (c).

Fig. S7 Variations of NO conversion efficiency with irradiation time for preliminary experiments with the absence of the 10%-CIS/APO, visible-light irradiation, H_2O_2 solution, both 10%-CIS/APO and H_2O_2 solution, respectively.

Fig. S8 Ion Chromatography analysis of ions in the solution after reaction in the presence of 10%-CIS/APO composite.

Fig. S9 The fitting line obtained by standard solutions using Ion Chromatography.

Fig. S10 FTIR spectra of 10%-CIS/APO before and after PCO of NO reaction.

Fig. S1 Schematic diagram of experimental apparatus for the PCO of NO.

Fig. S2 Schematic diagram of experimental groups (a-d) and the control group (e-f) in the trapping experiment.

Fig. S3 XRD of as-prepared pure CIS.

Fig. S4 SEM images of as-prepared CIS (a) along with EDS layered image (b), Ca (c), In (d), S (e) EDS mapping; EDS spectrum extracted from the map data (k).

Fig. S5 SEM images of as-prepared APO.

Fig. S6 The derived plots of transformed Kubelka–Munk function of as-prepared CIS (a), APO (b), 10%-CIS/APO (c).

Fig. S7 Variations of NO conversion efficiency with irradiation time for preliminary experiments with the absence of the 10%-CIS/APO, visible-light irradiation, H_2O_2 solution, both 10%-CIS/APO and H_2O_2 solution, respectively.

Fig. S8 Ion Chromatography analysis of ions in the solution after reaction in the presence of 10%-CIS/APO composite.

Fig. S9 The fitting line obtained by standard solutions using Ion Chromatography.

Fig. S10 FTIR spectra of 10%-CIS/APO before and after PCO of NO reaction.

Material balancing calculation of N element

To investigate possible byproducts, the nitrogen balancing calculation is performed. The actual molar value of NO_3 - and the estimated molar value of NO could be calculated by Eq. (1) and Eq. (2) based on the material balance of N element from NO:

$$n(NO_{3}^{-})_{act} = \frac{C(NO_{3}^{-})V_{L}}{M_{NO_{3}}}$$
(1)
$$n(NO_{x}^{-})_{est} = \frac{C_{in} \eta Q}{22.4} \times \frac{T_{0}}{T}$$
(2)

where $n(NO_3^{-})_{act}$ is the actual molar value of NO₃⁻ and $n(NO_x^{-})_{est}$ is the estimated molar value of NO; $c(NO_3^{-})$ is the actual concentration of NO₃⁻ in the solution; V_L represents the volume of solution (8 mL); $M_{NO3^{-}}$ is the molar mass of NO₃⁻, C_{in} and η refer to inlet concentration of NO (400 ppm) and conversion rate of NO, respectively; Q is the gas flow (100 mL·min⁻¹); t is the reaction time (80 min); T_{θ} is zero centigrade (273 K), while T is environmental temperature (298 K). Take 10%-CIS/APO composite photocatalyst for an instance, $n(NO_3^{-})_{act}$ is 0.100 mmol and $n(NO_x^{-})_{est}$ is 0.112 mmol. Based on the above calculation result, it can be seen that the estimated value and actual value of N element are in an order of magnitude. Also, the relative error between them is small. Therefore, the N element of NO which participated in the reaction was almost transferred into that of produced NO₃⁻.