Supporting Information

A One-step Synthesized Acridine-based Fluorescent Chemosensor for Selective Detection of Copper (II) Ions and Living Cell Imaging

${ }^{a}$ Department of Chemistry, Tsinghua University, Beijing, 100084, PR China
${ }^{b}$ The Ministry-Province Jointly Constructed Base for State Key Lab-Shenzhen Key Laboratory of Chemical Biology, the Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong 518055, PR China
${ }^{c}$ Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, PR China
${ }^{d}$ College of Chemistry and Chemical Engineering, Shenzhen University, Shenzhen, 518060, PR China
${ }^{e}$ School of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, PR China
${ }^{f}$ Department of Pharmacology and Pharmaceutical Sciences, School of Medicine, Tsinghua University, Beijing, 100084, P. R. China
${ }^{1}$ The two authors contributed equally to the work.

New Journal of Chemistry

* Corresponding author

Tel: +86-0755-26036017, Fax: +86-0755-26032094
E-mail addresses: yzg12@mails.tsinghua.edu.cn (Z. Yuan), jiangyy@sz.tsinghua.edu.cn (Y. Jiang).

1. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, and MS spectrum obtained for ACC

${ }^{1} \mathrm{H}$ NMR of ACC

$\stackrel{\stackrel{\rightharpoonup}{0}}{\stackrel{\text { Br }}{+}}$ (17ew

Figure S1. The above is the whole spectrum of ${ }^{1} \mathrm{H}$ NMR and the below is the partial spectrum.

${ }^{13}$ C NMR of ACC

Figure S2. The above is the whole spectrum of ${ }^{13} \mathrm{C}$ NMR and the below is the partial spectrum.

ESI mass spectra of ACC

Figure S3. ESI mass spectra of ACC

2. pH analysis

Figure S4. Fluorescence intensity recorded for chemosensor ACC $(10 \mu \mathrm{M})$ at various pH values in the absence or presence of 3 equiv. $\mathrm{Cu}^{2+}\left(\lambda_{\mathrm{ex}}=370 \mathrm{~nm}, \lambda_{\mathrm{em}}=491 \mathrm{~nm}\right)$.

3. MTT analysis

Figure S5. MTT assay of QLBA on HeLa cells (with ACC 3.91, 7.81, 15.6, 31.2, 62.5, 125 $\mu \mathrm{M})$ for 48 h (DMSO denotes: Only $0.5 \% \mathrm{DMSO})$.

4. Calculation of the limit of detection

The limit of detection $(L O D)$ was calculated based on the fluorescence titration according to the following equation (Eq. S1) ${ }^{[1,2]}$, where " k " is the standard deviation of the blank solution and "s" is the slope of the calibration curve in Figure S6. To determine "s", the emission intensity of ACC in HEPES buffer (pH 7.2) without any metal ions was measured 10 times, respectively.

$$
\begin{equation*}
L O D=3 \times \mathrm{k} / \mathrm{s} \tag{Eq.S1}
\end{equation*}
$$

5. Calculation of the association constant

The association constant (Ka) of $\mathbf{A C C}-\mathrm{Cu}^{2+}$ was obtained from nonlinear curve fitting of the fluorescence titration data according to the Benesie-Hildebrand equation (Eq.S2) ${ }^{[3-4]}$, where $\mathrm{F}_{0}, \mathrm{~F}, \mathrm{~F}_{\text {min }}$ are the fluorescence intensity of $\mathbf{A C C}$ in the absence of Cu^{2+}, at a certain concentration of Cu^{2+} cation, and the minimum fluorescence intensity of $\mathbf{A C C - C u}{ }^{2+}$ in the linear range, $[\mathrm{M}]$ is the Cu^{2+} concentration, and n is the binding stoichiometry.

$$
\begin{equation*}
\log \left[\left(\mathrm{F}_{0}-\mathrm{F}\right) /\left(\mathrm{F}-\mathrm{F}_{\min }\right)\right]=\mathrm{n} \log [\mathrm{M}]+\log \mathrm{Ka} \tag{Eq.S2}
\end{equation*}
$$

6. Reference

[1] A. Barba-Bon, A. M. Costero, S. Gil, M. Parra, J .Soto and R. Martínez-Máñez, Chem. Comтип., 2012, 48, 3000-3002.
[2] T. Mistri, R. Alam, M. Dolai, S. K. Mandal, A. R. Khuda-Bukhshb and M. Ali, Org. Biomol. Chem., 2013, 11, 1563-1569.
[3] H. A. benesi and J. H. Hildebrand, J.Am. Chem. Soc.,1949, 71, 2703-2710.
[4] C. H. Zhang, B. Z. Gao, Q. Y. Zhang, G. M. Zhang, S. M. Shuang and C. Dong, Talanta., 2016, 154, 278-283.

