Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Supporting Information

One pot synthesis of microporous nanoscale metal organic frameworks conjugated laccase as a promising biocatalyst

Arpita Samui, Sumanta Kumar Sahu*

Department of Applied Chemistry, Indian Institute of Technology (ISM), Dhanbad 826004, Jharkhand, India.

* Corresponding author. E-mail: sksahu@iitism.ac.in, sumantchem@gmail.com; Fax: +91 326-

2307772; Tel: +91 3262235936

1. Study of morphology of NMOFs:

The effect of laccase immobilization on morphology of NMOFs is scrutinized by preparing NH₂-MIL-53(Al)/laccase was prepared using different amount of laccase (20 mg, 30 mg, 40 mg, and 50 mg) and FESEM image of the particle shown in Fig. S1. It is revealed that laccase concentration has no effect on the morphology of the NMOFs and the particle size is also remain almost same as NH₂-MIL-53(Al).

Figure S1. FESEM image of NH₂-MIL-53(Al)/laccase at laccase amount (a) 20 mg (b) 30 mg (c) 40 mg (d) 50 mg.

Figure S2. FTIR spectra of (i) laccase, (ii) NH₂-MIL-53(Al) and (iii) NH₂-MIL-53(Al)/laccase

Table S1 Characteristics infrared bands of NH₂-MIL-53(Al)

Approximate	Functional group	Reference	
frequency (cm ⁻¹)			
3656	Bridging OH group	43	
3500, 3385	NH ₂ group	43, 44	
1604, 1578	Carboxylate group	43	
	coordinate to Al		
1700, 1500	Assymetric stretching of	44	
	C=O group		
1440, 1400	symmetric stretching of	44	
	C=O group		

Approximate	Functional group	Reference	
frequency (cm ⁻¹)			
3680-3000	OH and NH stretching	45, 46	
2920	CH stretching	45, 46	
1642–500	Peptide linkage	46–48	

 Table S2 Characteristics infrared bands of laccase

Table S3 Characteristics infrared bands of peptide linkage (J. Kong, S. Yu, Acta Biochimica etBiophysica Sinica 39(8) (2007) 549-559)

Designation	Approximate	Description	
	frequency (cm ⁻¹)		
Amide A	3300	NH stretching	
Amide B	3100	NH stretching	
Amide I	1600–1690	C=O stretching	
Amide II	1480-1575	CN stretching, NH bending	
Amide III	1229–1301	CN stretching, NH bending	
Amide IV	625-767	OCN bending	
Amide V	640-800	Out-of-plane NH bending	
Amide VI	537-606	Out-of-plane C=O bending	

3. Loading capability study

Loading capability of NMOFs is optimized using described procedure. Different amount of laccase (10 mg, 20 mg, 30 mg, 40 mg, and 50 mg) and a constant amount of NMOFs precursor

was used for each batch of synthesis. Then a fixed amount of laccase immobilized NMOFs was collected from the reaction pot and washed well. Then the activity was studied using ABTS activity assay. The activities are compared with free laccase, shown in Fig. S3. It is observed from activity efficiency that 625 mg laccase was loaded in 1 g NMOFs.

Figure S3. (a) UV spectra at different concentration free laccase, (b) the plot of AU_{420} versus free laccase concentration, (c) UV spectra with respect to different concentration laccase taken at time of onepot synthesis, (d) the plot of AU_{420} versus laccase concentration taken for immobilization.

4. Kinetic study

Table S4 Kinetic parameters of free and immobilized laccase

	Kinetic Parameters				
Support		K _m		V _{max}	
	Free laccase	Immobilized	Free laccase	Immobilized	
		laccase		laccase	
NH ₂ -MIL-	0.545	0.8037 mM/mL	0.4418	0.4765 mM/(mg	This work
53(Al)	mM/mL		mM/(mg min)	min)	
MNPs	1.3 mM	2 mM	56 mM/min	28 mM/min	S. Rouhani et
					al. ³³
PAN/O-MMT	120.32 μM	622.15 μM	595.24	293.46	G. Li et al. ⁴⁰
composite			µmol/(mg min)	µmol/(mg min)	
nanofibrous					
SiO ₂	29.3 µM	46.5 μM	1,890	1,630	S. K. S. Patel
nanoparticles			µmol/(min mg)	µmol/(min mg)	et al. ⁵¹
Cu(II)-chelated	98 μmol/L	205 µmol/L	578 µmol/(mg	293 µmol/(mg	J. Lin et al. ⁵²
magnetic			min)	min)	
microspheres					
Mn(II)-chelated	98 µmol/L	215 µmol/L	578 µmol/(mg	337 µmol/(mg	J. Lin et al. ⁵²
magnetic			min)	min)	
microspheres					