Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Supplementary information

Enhanced Activity of Trinuclear Zn(II) Complex towards Phosphate Ester Bond Cleavage

by Introducing Three Metal Cooperativity

Pooja Joshi,^c Navid Hussain,^a Shah Raj Ali,^c Rishu^{*, b} and Vimal K. Bhardwaj^{*, a}

^aDepartment of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India.

^bMCM DAV College for Women, Sector 36A, Chandigarh-160036, India

^oDepartment of Chemistry, D.S.B. Campus, Kumaun University, Nainital, Uttarakhand 263002, India

Table of Contents

S. Figure No		Contont	Page
No.	Figure No.	Content	No.
1	Figure S1-S3	I.R. spectrum of complex 1-3	3-4
2	Figure S4-6	¹ H NMR spectrum of compound 1-3	4-5
3	Figure S7-9	Packing diagram of compound 1-3	6-7
4	Figure S10.	Plots of [DNA]/ $\Delta \epsilon$ versus [DNA] obtained by the absorption titration of CT-DNA with 1-3	7-8
5	Figure S11	Plot of [DNA]/ $\Delta \epsilon$ versus [DNA] obtained by the absorption titration of CT-DNA with 2 in the absence (presence NaCl)	9
6	Figure S12	The effect of addition of complexes 1-3 on the emission intensity of EB bound to CT-DNA	9
7	Figure S13	Positive ESI-MS spectra of complex 2 and 3 in 30%DMF at neutral pH	10
8	Figure S14	Negative ESI-MS of complex 2 and 3	11
9	Figure S15	Control experiment for the transesterification of HPNP in the absence and presence of $Zn(OAc)_2 \cdot 2H_2O$	12
10	Figure S16	Dependence of rate of hydrolysis on substrate concentration for complex 3	12
11	Figure S17	³¹ P NMR of HPNP on addition of 0.1 mM solution of complex 3	13
12	Figure S18	ESI-MS spectrum of 2 and HPNP	13
13	Table S1(a)	Selected bond lengths and angles for 1	14
14	Table S1(b)	Hydrogen bonding parameters of 1	14
15	Table S2	Selected bond lengths and angles for 2	14-15
16	Table S3(a)	Selected bond lengths and angles for 3	15
17	Table S3(b)	Hydrogen bonding parameters of 3	15
18	Table S4	Comparative activities from reported complexes	16

Figure S1. I.R. spectrum of complex 1

Figure S2. I.R. spectrum of complex 2

Figure S3. I.R. spectrum of complex 3

Figure S4. ¹H NMR spectrum of compound 1

Figure S5. ¹H NMR spectrum of compound 2

Figure S6. ¹H NMR spectrum of compound 3

Figure S7.Packing diagram of compound 1

Figure S8.Packing diagram of compound 2

Figure S9.Packing diagram of compound 3

FigureS10(a). Plot of[DNA]/ $\Delta \varepsilon$ versus [DNA] obtained by the absorption titration of CT-DNA with **1**.

FigureS10(b). Plot of[DNA]/ $\Delta \varepsilon$ versus [DNA] obtained by the absorption titration of CT-DNA with **2**.

FigureS10(c). Plot of[DNA]/ $\Delta \varepsilon$ versus [DNA] obtained by the absorption titration of CT-DNA with **3**.

Figure S11. Plot of $[DNA]/\Delta\varepsilon$ versus [DNA] obtained by the absorption titration of CT-DNA with 2in the absence (Blue) and presence (Green) of 100 mM NaCl solution in 20 mM phosphate buffer at 7.5 pH.

Figure S12. The effect of addition of complexes 1-3(0-20 μ M)on the emission intensity of EB(1.25 μ M) bound to CT-DNA (25 μ M)at 604 nm (λ_{ex} = 525 nm), in 50 mM Tris-HCl/NaCl buffered 10% DMF solution (7.5 pH) at room temperature.

Figure S13(a). ESI-MS spectra of complex 2 in DMF-H₂O (30%, v/v).

Figure S13(b). ESI-MS spectra of complex 3 in DMF-H₂O (30%, v/v).

Figure S14(a). Negative ESI-MS mode of complex 2 inDMF-H₂O (30%, v/v) buffered solution at pH 8.5.

Figure S14(b). Negative ESI-MS mode of complex **3** in DMF-H₂O (30%, v/v) buffered solution at pH 9.0.

Figure S15. Control experiment for the transesterification of HPNP (0.5 mM) in the absence and presence of $Zn(OAc)_2 \cdot 2H_2O(50 \ \mu\text{M})$ (substrate: metal salt = 10:1) in 30% DMF recorded at an interval of 5 minutes at 30°C.

Figure S16.Dependence of rate of reaction on substrate concentration (0-4mM) for complex $3(50 \ \mu\text{M})$ at 25°C in 30% DMF (pH 8.5).

Figure S17. ³¹P NMR of HPNP on addition of 0.1 mM solution of complex 2 in DMSO- d_6 (pH 8.5 in the presence of 0.1 M CHES buffer).

Fig. S18. Negative mode ESI-MS spectrum of 2 and HPNP (1:10) at pH 8.50 in 30 % DMF solution

Bond length(A ⁰)						
Zn(1)-O(1)	2.1558(14)	Zn(1)-N(2)	2.0937(17)	Zn(2)-O(1)	2.0922(12)	
Zn(1)-O(2)	2.1899(13)	Zn(1)-N(4)	2.1088(17)	Zn(2)-O(2)	2.0964(14)	
Zn(1)-O(3)	2.1863(14)	Zn(1)-N(6)	2.0890(16)	Zn(2)-O(3)	2.0994(13)	
Zn(3) - O(4)	2.2039(14)	Zn(3)-N(9)	2.1197(15)	Zn(2)-O(4)	2.1100(11)	
Zn(3)-O(5)	2.1613(13)	Zn(3)-N(11)	2.0961(17)	Zn(2) - O(5)	2.0670(14)	
Zn(3)-O(6)	2.1921(13)	Zn(3) - N(13)	2.1128(16)	Zn(2)-O(6)	2.1210(12)	
		Bond a	ngle (⁰)			
O(1)-Zn(1)-O(2)	74.66(5)	O(4)-Zn(2)-O(6)	76.94(5)	O(4)-Zn(3)-O(5)	74.95(5)	
O(1)-Zn(1)-O(3)	75.77(5)	O(5)-Zn(2)-O(6)	77.83(5)	O(4)-Zn(3)-O(6)	73.56(5)	
O(1)-Zn(1)-N(2)	86.16(6)	O(1)-Zn(2)-O(2)	77.98(5)	O(4)-Zn(3)-N(9)	83.35(5)	
O(1) - Zn(1) - N(4)	157.46(5)	O(1)-Zn(2)-O(3)	79.01(5)	O(4)-Zn(3)-N(11)	158.63(5)	
O(1)-Zn(1) -N(6)	92.47(6)	O(1)-Zn(2)-O(4)	101.23(5)	O(4)-Zn(3)-N(13)	90.67(6)	
O(2) - Zn(1) - O(3)	73.53(5)	O(1)-Zn(2)-O(5)	101.10(5)	O(5)-Zn(3)-O(6)	74.36(5)	
O(2)-Zn(1)-N(2)	92.53(6)	O(1)-Zn(2)-O(6)	178.00(5)	O(5) - Zn(3) - N(9)	93.33(5)	
O(2)-Zn(1)-N(4)	83.75(5)	O(2)-Zn(2)-O(3)	77.25(5)	O(5)-Zn(3)-N(11)	85.48(5)	
O(2)-Zn(1)-N(6)	157.68(6)	O(2)-Zn(2)-O(4)	99.34(5)	O(5)-Zn(3)-N(13)	157.63(6	
O(3)-Zn(1)-N(2)	159.46(6)	O(2)-Zn(2)-O(5)	177.91(5)	O(6)-Zn(3)-N(9)	155.91(5)	
O(3)-Zn(1)-N(4)	92.14(6)	O(2)-Zn(2)-O(6)	103.04(5)	O(6)-Zn(3)-N(11)	93.17(6)	
O(3)-Zn(1)-N(6)	85.79(6	O(3)-Zn(2)-O(4)	176.48(6)	O(6)-Zn(3)-N(13)	85.27(5)	
N(2)-Zn(1)-N(4)	101.42(7)	O(3)-Zn(2)-O(5)	104.46(5)	N(9)-Zn(3)-N(11)	106.66(6)	
N(2)-Zn(1)-N(6)	104.94(6)	O(3)-Zn(2)-O(6)	102.86(5)	N(9)-Zn(3)-N(13)	102.07(6)	
N(4)-Zn(1)-N(6)	105.75(6)	O(4)-Zn(2)-O(5)	78.97(5)	N(11)-Zn(3)- N(13)) 105.14(6)	

Table S1(a). Selected bond lengths and angles $(Å, \circ)$ for $[Zn_3(L^1)_2] \cdot H_2O \cdot 4CH_3CN$ (1)

Table S1(b). Hydrogen bonding parameters (Å, °) of (1)

DH···A	Н…А	D····A	D H···A
C19 H19BO13 ⁽ⁱ⁾	2.4700	3.250(3)	138.00
C25H25O12 ⁽ⁱⁱ⁾	2.5400	3.342(3)	144.00
C29H29AN15(iii)	2.6000	3.412(4)	141.00
C39H39O7 ^(iv)	2.5100	3.431(3)	170.00
C46H46AO9 ^(v)	2.5500	3.322(3)	136.00
C57H57AO11 ^(vii)	2.5700	3.333(4)	137.00

Symmetry codes: (i) 1-x,-y,1-z; (ii) 1-x,1-y,1-z;(iii) 1-x,1-y,1-z;(iv) 1+x,y,z;(v) x,1+y,z;(vi)1-x,1-y,1-z.

Table S2(a). Selected bond lengths and angles $(Å, \circ)$ for $[Zn_3(L^1)_2(H_2O)_4]$. H₂O. 2DMF (2).

Bond Length(A ⁰)							
Zn(1)-O(4)	2.231(4)	Zn(1)-O(1)	2.0264(17)	Zn(1)-N(2)	2.136(3)		
Zn(2)-O(5)	2.1362(16)	Zn(2)-O(3)	2.0796(15)	Zn(2)-O(2)	2.0435(16)		
Zn(2)- N(6)	2.0826(18)	Zn(2)-N(1)	2.3400(19)	Zn(2)-N(4)	2.1349(18)		

Bond Angle(⁰)							
O(4)-Zn(1)-O(4)	76.23(16)	O(1)- $Zn(1)$ - $O(4)$	91.28(11)	O(1)-Zn(1)-O(4)	92.90(12)		
O(1)-Zn(1)-O(1)	174.7(2)	O(1)-Zn(1)-N(2)	89.51(10)	O(1)-Zn(1)- N(2)	87.67(9)		
N(2)- $Zn(1)$ - $O(4)$	160.11(17)	N(2)- $Zn(1)$ - $O(4)$	83.99(8)	N(2)-Zn(1)- N(2)	115.8(2)		
O(5)-Zn(2)-N(1)	86.49(7)	O(3)-Zn(2)- $O(5)$	84.13(6)	O(3)-Zn(2)- N(6)	85.02(7)		
O(3)-Zn(2)-N(1)	86.49(7)	O(3)-Zn(2)- N(1)	108.16(7)	O(3)-Zn(2)- N(4)	170.40(7)		
O(2)-Zn(2)-O(5)	96.88(7)	O(2)-Zn(2)- $O(3)$	88.26(7)	O(2)-Zn(2)- N(6)	104.72(7)		
O(2)-Zn(2)-N(1)	163.52(7)	O(2)-Zn(2)- N(4)	86.83(7)	N(6)-Zn(2)- O(5)	155.46(7)		
N(6)-Zn(2)-N(1)	76.11(7).	N(6)- $Zn(2)$ - $N(4)$	104.21(7)	N(4)-Zn(2)- O(5)	88.27(7)		
N(4)-Zn(2)- $N(1)$	77.12(7)						

Table S3(a). Selected bond lengths and angles $(\text{\AA}, ^{\circ})$ for $[\text{Zn}_2(\text{L}^2)_2.(\text{H}_2\text{O})_2.2\text{H}^+].2\text{ClO}_4^-$ (3).

Bond Length(A ⁰)						
Zn(1)-O(2)	1.997(2)	Zn(1)-O(3)	2.040(4)	Zn(1)-N(1)	2.110(2)	
Zn(2)-O(1)	1.976(2)	Zn(2)-O(4)	2.023(5)	Zn(2)-N(3)	2.116(3)	

Bond Angle(⁰)					
O(2)-Zn(1)-O(2)	132.84(13)	O(2)-Zn(1)-O(3)	113.58(7)	O(2)-Zn(1)-N(1)	87.49(9)
O(2)-Zn(1)-N(1)	90.18(9)	O(3)-Zn(1)-N(1)	92.91(7)	N(1)-Zn(1)-N(1)	174.17(14)
O(1)-Zn(2)-O(1)	134.43(14)	O(1)-Zn(2)-O(4)	112.79(7)	O(1)-Zn(2)-N(3)	91.79(9)
O(1)-Zn(2)-N(3)	87.41(9)	O(4)-Zn(2)-N(3)	91.03(7)	N(3)-Zn(2)-N(3)	177.94(15)

 Table S3(b).
 Hydrogen bonding parameters (Å, °) of (3)

	01			
D-H···A D···A		Н…А	D-H···A	
N2 H2A O2 i	1.8300	2.707(3)	163.00	
N2 H2B O1 ⁱ	1.8600	2.734(3)	162.00	
C2 H2 O8 ⁱⁱ	2.4900	3.383(4)	161.00	
C10H10AO8 iii	2.4700	3.293(5)	142.00	
C11 H11B O7 ^{iv}	2.4300	3.309(5)	150.00	

Equivalent positions: (i)1-x,y,1/2-z (ii)1/2-x,1/2-y,1/2+z (iii)1/2+x,1/2-y,-z (iv)1-x,1-y,-z

Complex	Substrate	Conditions	K _{cat} (s ⁻¹)	Reference	
		acetonitrile-water	3 5 x 10 ⁻⁴	\$1	
	4-1111	(2.5% (v/v), 25° C	5.5 ~ 10		
$[Cu^{II}_{2}(L^{1})(\mu O_{2}CMe)_{2}][NO_{3}$	HPNP	MeOH–H ₂ O (33%, v/v)	14.50 × 10 ⁻⁴	S2	
$[7n (I_{-})_{-}(I_{-})_{-}(M_{0}) (M_{0}(N)_{-})][DE_{-}]$		MeOH-H2O (33%, v/v),	2 11~ 10-4	62	
		30° C	5.44^ 10	55	
	2,4-	CH ₃ CN/H ₂ O;	9 76 x 10 ⁻⁴	S4	
[Cu ₃ (L_2pyald)(μ-OAc)](ClO ₄) ₂	BDNPP	(50% v/v)	9.70 ~ 10		
	BUNDD	H ₂ O : MeCN : MeOH =	3 95 x 10 ⁻³	S5	
$[Cu_2(H_2pat^{\perp}) - (\mu - OH)(H_2O)_2]$	BUNFF	50 : 45 : 5, 25 °C	5.55 × 10		
	HPNP	DMSO-H ₂ O (30%, v/v),	6.4 x 10 ⁻⁴		
2n ₂ (bpmp)(μ-OH)(ClO ₄) ₂		25° C	0.4 × 10	S6	
[Ni ₂ (μ-LClO)(μ2-OAc) ₂](PF6)·3H ₂ O	BDNPP	CH₃CN	2.80 × 10 ⁻³	S7	
[Zn ₃ (L ¹) ₂ (H ₂ O) ₄]·H ₂ O·2DMF (2)	HPNP	DMF-H₂O (30%, v/v)	9.6 × 10 ⁻³	Present work	

Table S4. Phosphotase like activities from reported complexes

References

- [S1] S. Anbu, M. Kandaswamy and B. Varghese, *Dalton Trans.*, 2010, **39**, 3823–3832
- [S2] S. K. Barman, T. Mondal, D. Koley, F. Lloret and R. Mukherjee, Dalton Trans., 2017, 46, 4038–4054
- [S3] H. Arora, S. K. Barman, F. Lloret and R. Mukherjee, *Inorg. Chem.* 2012, 51, 5539–5553
- [S4] R. E. H. M. B. Osorio, A. Neves, T. P. Camargo, S. L. Mireski, A. J. Bortoluzzi, E. E. Castellano, W. Haase, Z. Tomkowicz, *Inorg. Chim. Acta* 2015, **435**, 153–158.
- [S5] P. Comba, L. R. Gahan, G. R. Hanson and M. Westphal, *Chem. Commun.* 2012, 48, 9364–9366
- [S6] K. Selmeczi, C. Michel, A. Milet, I. Gautier-Luneau, C. Philouze, J. –L. Pierre, D. Schnieders, A. Rompel and C. Belle, *Chem. Eur. J.* 2007, **13**, 9093 9106.
- [S7] S. S. Massoud, C. C. Ledet, T. Junk, S. Bosch, P. Comba, R. Herchel, J. Hošek, Z. Trávníček, R. C. Fischerd and F. A. Mautner, *Dalton Trans.*, 2016, 45, 12933–12950.