Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

NJC

RSCPublishing

PAPER (or FOCUS or PERSPECTIVE)

Electronic Supporting Information for:

Regioselective addition of DDQ on a quinoid ring: an entry into chiral zwitterionic bridging ligands

Gabriel Canard,*^a Zhongrui Chen,^a Aprilliyani Suryaningtias,^a Marion Jean,^b Nicolas Vanthuyne,^b Michel Giorgi,^c Christian Roussel^b and Olivier Siri*^a

^a Aix Marseille Univ, CNRS, CINaM UMR 7325, 13288, Marseille, France. Fax: (+33) 491 41 8916; E-mails:

gabriel.canard@univ-amu.fr and olivier.siri@ univ-amu.fr.

^b Aix Marseille Univ, CNRS, Centrale Marseille, ISM2 UMR 7325, Marseille, France.

^c Aix Marseille Univ, Spectropole, Marseille, France.

Table of contents	p 1
Table S1: Structural analysis and refinement of 11a	p 2
Determination of the enantiomerization barrier value of 11a	р 3
Preparative chiral HPLC separation of 11a and resulting chiral purity analysis of the enantiomers of 11a	p 4
Fig S2: Partial views of the ¹ H NMR spectra (in DMSO-d ₆) of 4a, 4c, 11a, 11c and of an equimolar mixture of 4c and 11a after 20 minutes and 18 hours.	p 6
¹ H and ¹³ C NMR spectra of 11a-c	р7

Table S1: Structural analysis and refinement of 11a

Compound	11a
CCDC	1572929
Formula	$C_{22}H_{22}N_4O_4$
M _w	473.33
Crystal system	monoclinic
Measurement temperature (K)	293
Space group	P 2 ₁ /c
a (Å)	13.4139(16)
b (Å)	19.1246(19)
c (Å)	9.4516(9)
β/°	103.255(10)
V (Å ³)	2360.1(4)
Z	4
Dc (g.cm ⁻³)	1.343
Crystal colour	red
Crystal size (mm ³)	0.01×0.05×0.05
μ(Mo-Kα) (cm ⁻¹)	2.776
N° of unique refl.	6451
N° of observed refl.[$F^2 > 4\sigma F^2$]	3612
N° parameters refined/restraints	321/27
R ₁ [F ² >4σF ²]	0.0820
$wR_1[F^2>4\sigma F^2]$	0.2048
R ₂ [all refl.]	0.1383
wR ₂ [all refl.]	0.2342
Goodness of fit [all refl.]	1.032
Largest diff. peak/hole /e. Å ⁻³	+0.445; -0.417

Determination of the enantiomerization barrier of 11a

A solution of about 0.5 mg of the second eluted enantiomer in 1 mL of the mixture hexane / ethanol + trifluoroacetic acid (0,1% v/v) / dichloromethane (10/80/10 v/v/v) was thermostated at 25 °C and 10 μ L of this solution were injected on (*S*,*S*)-Whelk-O1 every 12 minutes. The decreasing percentage of the second eluted enantiomer was monitored and transferred to a kinetic analysis giving the following values, $k_{\text{enantiomerization}}$ = 8.88 10⁻⁵ s⁻¹, t_{1/2}= 65 minutes and ΔG^{\neq} = 96.2 kJ.mol⁻¹.

Time (min)	% enantiomer	ln ((%t-50%)/(%(t=0)-50%))
0	87.59	0.0000
12	83.35	-0.1197
24	79.42	-0.2451
36	75.62	-0.3834
48	72.69	-0.5048

Fig S1: Determination of the enantiomerization barrier of 11a

ARTICLE

Preparative chiral HPLC separation and optical purity analysis of 11a enantiomers

• Sample preparation: About 70 mg of the racemic **11a** are dissolved in 15 mL of a mixture ethanol / dichloromethane (2/1).

• Chromatographic conditions: stationary phase: (*S*,*S*)-Whelk-O1; mobile phase: hexane / ethanol + trifluoroacetic acid (0,1%) / dichloromethane (10/80/10); flow-rate = 5 mL/min; UV detection at 254 nm.

• Injections (stacked): 60 times 250 µL, every 8 minutes.

• Collection: each enantiomer was collected in a flask containing sodium carbonate in ethanol, because racemization occurs in acidic media.

• First fraction: 25 mg of the first eluted with ee > 99%; • Second fraction: 25 mg of the second eluted with ee > 96

• Chromatograms and HPLC data of the collected fractions:

- first eluted enantiomer :

- second eluted enantiomer :

Fig S2: Partial views of the ¹H NMR spectra (in DMSO-d₆) of **4a**, **4c**, **11a**, **11c** and of an equimolar mixture of **4c** and **11a** after 20 minutes and 18 hours.

¹H and ¹³C NMR spectra of 11a-c

This journal is © The Royal Society of Chemistry 2017

New J. Chem., 2017, XX, X-X | 7

Fig. S5: ¹³C NMR spectrum of **11a** in DMSO-d₆ (100 MHz, 294 K).

Fig. S6: ¹H NMR spectrum of **11b** in DMSO-d₆ (400 MHz, 294 K)

8 | New J. Chem., 2017, XX, X-X

This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2017

Fig. S8: ¹H NMR spectrum of **11c** in DMSO-d₆ (400 MHz, 294 K).

This journal is © The Royal Society of Chemistry 2017

Fig. S9: 13 C NMR spectrum of **7c** in DMSO-d₆ (100 MHz, 294 K).