Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Supporting Information

Adsorptive Removal of Ciprofloxacin by Ethylene Diaminetetraacetic

Acid/β-cyclodextrin Composite from Aqueous Solution

Yu Fei^{a, c§}, Chen Dexian^{a§}, Ma Jie^{b,d*}

^a School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Hai Quan Road, Shanghai 201418, P.R. China

^b Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092,

P.R. China

^c College of Ecology and Environment, Shanghai Ocean University, Shanghai 201306,

P.R. China

^d Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, P.R. China

1. Adsorption kinetic models

The pseudo-first-order model is as follows:

$$\log\left(q_e - q_t\right) = \log q_e - k_1 t$$

where q_t and q_e (mg/g) are the amount of CPX adsorbed per unit mass of adsorbent at any time t (min) and equilibrium, respectively. k_1 (min⁻¹) is the rate constant of pseudofirst-order model.

The pseudo-second-order kinetic model is as follows:

$$\frac{t}{q_t} = \frac{1}{k_2 q_e^2} + \frac{1}{q_e} t$$

where k_2 (g/mg min) is the rate constant of pseudo-second-order model.

2. Adsorption isotherm models

The nonlinear forms of Langmuir and Freundlich models were expressed as follows:

$$q_e = \frac{q_m k_l c_e}{1 + k_l c_e}$$
$$q_e = K_f + C_e^{\frac{1}{n}}$$

where C_e and q_e are the concentrations of adsorbate in water and the amount of adsorbate adsorbed to adsorbent when the adsorption equilibrium is reached, respectively. q_m is the maximum adsorption capacity, and K_1 is Langmuir constant (L/mg) related to the energy of adsorption and the affinity of the binding sites . Moreover, K_f are Freundlich constant, also known as capacity factor related to adsorption capacity ((mg g⁻¹)(L mg⁻¹)^{1/n}) . 1/n related to adsorption intensity, which is a dimensionless empirical parameter.

In order to adequately study the adsorption mechanisms, the linear Dubinin Radushkevich (D-R) isotherm model was chosen and exhibited as follows:

$$lnq_e = lnq_m - B\varepsilon^2$$

where B is a constant related to the mean free energy of adsorption (mol² kJ⁻²), qm is the theoretical saturation capacity (mg g-1), and ε is the Polanyi value , which can be calculated from eq 7:

$$\varepsilon = RTln(1 + \frac{1}{c_e})$$

where R (J mol⁻¹ K^{-1}) is thermal equilibrium constant and T(K) is the absolute temperature.