Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Supporting information

Schiff base receptor as fluorescence turn-on sensor for Ni²⁺ ions in live cells and

logic gate application

Gujuluva Gangatharan Vinoth Kumar^a, Mookkandi Palsamy Kesavan^a, Murugesan Sankarganesh^a, Kathiresan Sakthipandi^c, Jegathalaprathaban Rajesh^{a*,} Gandhi Sivaraman^{b*}

^aChemistry Research Centre, Mohamed Sathak Engineering College, Kilakarai-623 806, Tamil Nadu, India.

^bInstitute for stem cell biology and regenerative medicine, Bangalore-560065, Karnataka, India.

^c Department of Physics, Sethu Institute of Technology, Kariapatti-626 115, Tamilnadu, India.

Fig. S1 (a) ¹H NMR spectrum of receptor R. (b) ¹³C NMR spectrum of receptor R.

Fig. S2 ESI-MS spectra of the synthesized receptor R.

Fig. S3 Color changes of receptor R in CH₃CN solution (from left to right: R only; $R+Ni^{2+}$; R+ Cu²⁺; R+Fe²⁺; R+Mn²⁺; R+Mg²⁺; R+Co²⁺; R+Zn²⁺; R+Cd²⁺; R+Ag⁺; R+Na⁺; R+Al³⁺; R+Cr³⁺; R+Li⁺; R+Ca²⁺; R+Ba²⁺; R+Hg²⁺; R+K⁺).

Fig. S4 (a) Absorption titration of Benesi-Hildebrand plot of $R-Ni^{2+}$. (b) Absorption spectra of the calibration curve of $R-Ni^{2+}$.

Fig. S5 ESI-MS spectra of the receptor R with addition of 2 equiv. of Ni²⁺ ion.

Fig. S6 (a) Fluorescence spectra of association constant between R and Ni^{2+} . (b) Fluorescence spectra of the calibration curve of R-Ni²⁺.

Fig. S7 FTIR spectra of receptor R and R-Ni $^{2+}$ ion.

Fig. S8 ¹H-NMR titration of R with Ni(II) ions.

Fig. S9 Fluorescenece titration of R with Ni(II) in HEPES buffer (pH=7.4) (10% Acetonitrile) as co solvent.

Fig. S10 Fluorescenece titration of R with Ni(II) in HEPES buffer (pH=7.4) (10% DMSO) as co solvent.

Fig. S11 (a) UV-Vis spectra of R (30 μ M) upon successive addition of Ni²⁺ (60 μ M) and EDTA (120 μ M). (b) Fluorescence spectra of R (30 μ M) upon successive addition of Ni²⁺ (60 μ M) and EDTA (120 μ M).

Fig. S12 Photograph of the test kits with receptor R for sensing Ni²⁺ ion in aqueous solution (a) Different concentration of Ni²⁺ ion. From left to right: 0; 1×10^{-3} M; 1×10^{-4} M. (b) sensing various metal ions (1×10^{-4} M). From left to right: R, Ni²⁺, Cu²⁺, Fe²⁺, Mn²⁺, Mg²⁺, Co²⁺, Zn²⁺, Cd²⁺, Ag⁺, Na⁺, Al³⁺, Cr³⁺, Li⁺, Ca²⁺, Ba²⁺, Hg²⁺, and K⁺.

Fig. S13 Time dependent fluorescence response of the probe with Ni(II).

Fig. S14 pH dependent fluorescence response of the probe.

Receptor	Selectivity	Method	Solvent	Detection	Structure	References
			system	limit		
Coumarin	Ni ²⁺	Colorimetric	EtOH	5×10-7	HO	1
Chalcone based	Ni ²⁺	Fluorescence	MeOH/H ₂ O	5.14×10 ⁻⁶		2
Glutathione-Ag Nps based	Ni ²⁺	Colorimetric	H ₂ O	7.5×10 ⁻⁵	-	3
Quinoxaline based	Ni ²⁺	Colorimetric	CH ₃ CN- HEPES	1.47×10 ⁻⁶	N N NO2	4
Benzothiadiazoyl- triazole	Ni ²⁺	Colorimetric/ Fluorescence	CH ₃ CN	ND	AcO OAcOMe	5
Coumarin schiffbase	Ni ²⁺	Colorimetric	CH ₃ CN	ND	HO N=C N=C N	6
Dipyrrolyl	Ni ²⁺	Fluorescence	CH ₃ CN	ND		7

Coumarin dye	Ni ²⁺	UV-Vis/	HEPES	ND	CF ₃	8
		Fluorescence	buffer in		NH	
			EtOH/H ₂ O		Et ₂ N 0 0	
Schiff base	Ni ²⁺	colorimetric	CH ₃ CN	3.61×10-7		Present
					N N N N N N N N N N N N N N N N N N N	work

Table-1: comparision of the reported Ni(II) sensors.

ND - Not Determined

References

- 1. J. Jiang, C. Gou, J. Luo, C. Yi and X. Liu, Inorg. Chem. Commun. 2012, 15, 12–15.
- 2. J. Prabhu, K. Velmurugan, A. Raman, N. Duraipandy, M. S. Kiran, S. Easwaramoorthi and R. Nandhakumar, *Sens. Actuators B: Chemical*, 2017, **238**, 306-317.
- 3. H. Li, Z. Cui and C. Han, Sens. Actuators B: Chemical, 2009, 143, 87-92.
- S. Goswami, S. Chakraborty, S. Paul, S. Halder and A. C. Maity, *Tetrahedron Lett.* 2013, 54, 5075-5077.
- 5. S. Maisonneuve, Q. Fang and J. Xie, *Tetrahedron*, 2008, **64**, 8716–8720.
- 6. L. Wang, D. Ye and D. Cao, Spectrochim. Acta Part A, 2012, 90, 40–44.
- 7. T. Ghosh, B. G. Maiya and A. Samanta, *Dalton Trans.* 2006, 6, 795-801.
- 8. H. Li, L. Cai, J. Li, Y. Hu, P. Zhou and J. Zhang, Dyes and Pigments, 2011, 91, 309-316.