Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Electronic Supplementary Information

Divergent synthesis of 3,4-dihydrodibenzo[*b,d*]furan-1(2*H*)-ones and isocoumarins *via* additive-controlled chemoselective C-C or C-N bond cleavage

Youpeng Zuo, Xinwei He, Yi Ning, Lanlan Zhang, Yuhao Wu, Yongjia Shang*

Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China

Corresponding author: shyj@mail.ahnu.edu.cn

Table of content

Optimization of the Reaction condition	S1
Copies of ¹ H and ¹³ C NMR Spectra for all Compounds	S2-S49
X-Ray Crystallography structures of Compound 3aa	-S50
X-Ray Crystallography structures of Compound 4ab	-S50
HRMS spectra for all Compounds	-S51-S66

/	$ \begin{array}{c} 0 \\ N_2 \\ + \\ 0 \\ 1a \end{array} $	catalyst (1 mol%) additive, solvent reflux, 16 h	O O 3aa		OH O Naa
entry	catalyst	additive (mol%)	solvent	Temp (°C)	$\operatorname{Yield}^{b}(\%)$
1	[(<i>p</i> -cymene)RuCl ₂] ₂	AgNTf ₂ (10)	MeOH	reflux	trace
2	Ru(PPh ₃)Cl ₂	AgNTf ₂ (10)	MeOH	reflux	trace
3	$Pd(OAc)_2$	AgNTf ₂ (10)	MeOH	reflux	trace
4	CuI	AgNTf ₂ (10)	MeOH	reflux	trace
5	[Cp*RhCl ₂] ₂	CsOPiv (10)	MeOH	reflux	trace
6	[Cp*RhCl ₂] ₂	AgOAc (10)	MeOH	reflux	trace
7	[Cp*RhCl ₂] ₂	CsOAc (10)	MeOH	reflux	trace
8	[Cp*RhCl ₂] ₂	AgSbF ₆ (10)	MeOH	reflux	trace
9 ^c	[Cp*RhCl ₂] ₂	AgNTf ₂ (10)	MeOH	reflux	74
10^d	[Cp*RhCl ₂] ₂	AgNTf ₂ (10)	MeOH	reflux	67
11 ^e	[Cp*RhCl ₂] ₂	AgNTf ₂ (10)	MeOH	reflux	53
^{<i>a</i>} Rea	ction conditions:	2-dizaocyclohexane	e-1,3-dione	1a (0.:	5 mmol),
2-hydroxy-N-methylbenzamide 2a (0.5 mmol), solvent (3 mL), and catalyst (1.0					
mol%), under argon atmosphere. ^b Ioslated yields of compound 3aa. ^c Reaction time					
was 20 h. ^d Reaction time was 10 h. ^e Reaction time was 8 h.					

 Table S1 Optimization of the Reaction Conditions^a

¹H NMR and ¹³C NMR Spectra of Compound 3aa

¹H NMR and ¹³C NMR Spectra of Compound 3ab

S4

S6

¹H NMR and ¹³C NMR Spectra of Compound 3af

¹H NMR and ¹³C NMR Spectra of Compound 3ai

¹H NMR and ¹³C NMR Spectra of Compound 3aj

¹H NMR and ¹³C NMR Spectra of Compound 3ak

¹H NMR and ¹³C NMR Spectra of Compound 3ba

¹H NMR and ¹³C NMR Spectra of Compound 3bb

¹H NMR and ¹³C NMR Spectra of Compound 3bc

¹H NMR and ¹³C NMR Spectra of Compound 3bd

¹H NMR and ¹³C NMR Spectra of Compound 3be

¹H NMR and ¹³C NMR Spectra of Compound 3bf

< 8.152
< 8.155
< 8.125
</pre>
7.739

7.509

7.578

7.5605

4422832804444444	65
0000000/	N N
~~~~~~~~~~~~~~~~	÷.÷



¹H NMR and ¹³C NMR Spectra of Compound 3ca







¹H NMR and ¹³C NMR Spectra of Compound 3cb









¹H NMR and ¹³C NMR Spectra of Compound 3cc







¹H NMR and ¹³C NMR Spectra of Compound 3cd







¹H NMR and ¹³C NMR Spectra of Compound 3ce





¹H NMR and ¹³C NMR Spectra of Compound 3cf











¹H NMR and ¹³C NMR Spectra of Compound 3ch

































¹H NMR and ¹³C NMR Spectra of Compound 3ea



 $-\frac{0.037}{1.395}$ 





¹H NMR and ¹³C NMR Spectra of Compound 3eb





2.568 2.568 2.5665 2.5665 2.5584 2.5584	2297
--------------------------------------------------------	------



¹H NMR and ¹³C NMR Spectra of Compound 3ec





057 015 585 585	326 305 284 284 284
00000	00000



¹H NMR and ¹³C NMR Spectra of Compound 3ed



∠ 7.922 ∠ 7.895 − 7.644 − 7.438 − 7.261

049 008 606 584	284 284 284 284 284 284 284 284 218
00000	000000
	and the second s







#### S37











S42















X-Ray Crystallography structures of Compounds 3aa and 4ab



Figure S1. X-ray crystal structure of 3aa

Crystal data for **3aa**: C₁₄H₁₄O₂, Mr = 214.26, Monoclinic, a = 9.4379(9) Å, b = 12.1544(11) Å, c = 9.8277(9) Å,  $\alpha = 90^{\circ}$ ,  $\beta = 96.810(10)^{\circ}$ ,  $\gamma = 90^{\circ}$ , V = 1119.28(18) Å³, T = 293(2) K, space group P2(1)/n, Z = 8, 8285 reflections collected, 2061 unique (R_{int} = 0.0269) which were used in all calculation. The ellipsoid contour probability level in the caption of 30 %.

Crystallographic data for compound **3aa** reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. **CCDC-1554775**.



Figure S2. X-ray crystal structure of 4ab

Crystal data for **4ab**: C₁₆H₁₆O₄, *Mr* =272.29, Monoclinic, *a* =8.8746(6) Å, b = 15.3282(11) Å, c = 10.0135 (7) Å,  $\alpha = 90^{\circ}$ ,  $\beta = 95.182$  (2)o,  $\gamma = 90^{\circ}$ , *V*=1356.59 (16) Å³, *T* = 293 (2) K, space group P2(1)/c, *Z* = 4, 23206 reflections collected, 2484 unique (R_{int} = 0.0390) which were used in all calculation. The ellipsoid contour probability level in the caption of 30%.

Crystallographic data for compound **4ab** reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. **CCDC-1555510**.

# HRMS Spectra of Compound 3aa



# HRMS Spectra of Compound 3ab







# HRMS Spectra of Compound 3ad













# HRMS Spectra of Compound 3ag











# HRMS Spectra of Compound 3aj









# HRMS Spectra of Compound 3bb



# HRMS Spectra of Compound 3bc







# HRMS Spectra of Compound 3be



#### HRMS Spectra of Compound 3bf





















# HRMS Spectra of Compound 3ce











# HRMS Spectra of Compound 3cf









# HRMS Spectra of Compound 3dc











# HRMS Spectra of Compound 3ea























# HRMS Spectra of Compound 4ac













#### **HRMS Spectra of Compound 4ba**









# HRMS Spectra of Compound 4bd











# HRMS Spectra of Compound 4da



HRMS Spectra of Compound 4db

