Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Electronic Supplementary Information (ESI)

Fe(II) metal-organic framework as visible responsive photo-Fenton catalyst for the degradation of organophosphates

Wen-Juan Li,‡^a Yue Li,‡^{ab} Di Ning,^a Qiao Liu,^a Lan Chang,^a Wen-Juan Ruan^{*ab}

^a College of Chemistry, Nankai University, Tianjin 300071, China. Email: wjruan@nankai.edu.cn

^b Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China.

Experimental details

Materials and methods

All used chemicals were obtained commercially and used as received without further purification. SEM images were taken with a JEOL JSM-7500F scanning electron microscope. A Rigaku D/Max-2500 diffractometer with Cu K α radiation (λ = 0.15406 nm) was applied to get the powder X-ray diffraction (PXRD) patterns of samples at 40 kV and 100 mA. Fourier transform infrared (FT-IR) spectra were recorded with KBr pellet by a Nicolet Magna-IR 560 Fourier transform infrared spectrometer. The elemental compositions (C, H, and N) were measured by a Perkin-Elmer 240C analyzer. Thermogravimetric analysis (TGA) was performed with a Rigaku standard TG-DTA analyzer from ambient temperature to 700 °C with a heating rate of 10 °C min⁻¹ in the air, and an empty Al_2O_3 crucible was used as the reference. X-ray photoelectron spectroscopy (XPS) measurements were carried out on an ESCALAB 250 VG Lited XPS using Al K α radiation (hv = 1486.6 eV), and binding energies were referred to the C 1s at 285.0 eV. Absorption spectra of solid and solution samples were measured by USA Cary 5000 and Shimadzu UV-2450 spectrophotometers, respectively. The photocatalytic experiments were carried out under the irradiation from a CEL-HX F300/CEL-HX UV300 xenon lamp, and a 420 nm cut-off filter was applied to remove the UV component. The concentrations of substrate and intermediates formed during photocatalytic degradation were determined by HPLC method (Agilent LC 1200). The ions (PO_4^{3-}, NO_3^{-}) were quantified by an ion chromatography (Dionex ICS-900) equipped with an lonpac ASII-HC column (4×250 mm, Dionex), an eluent generator (Dionex EGCIII KOH) and a conductivity detector. The total organic carbon (TOC) of the degraded solution was measured by Analytic jena multi N/C 2100 TOC analyzer. Electron spin resonance (ESR) spectra were obtained using a Brucker model EPR 300E spectrometer.

Synthesis of Fe-pydc

FeSO₄ (0.2782 g, 1 mmol) and H₂pydc (0.1672 g, 1 mmol) were dissolved respectively in 100 mL H₂O and 100 mL DMF. These two solutions were well-mixed at room temperature in a 250 mL round-bottom flask and then heated at 130 °C for 4 h in oil bath. After cooling down to room temperature, the resulting orange precipitate was collected by centrifugation, washed with H₂O, DMF and ethanol in sequence , and then dried at 60 °C in a vacuum drying oven.

Photocatalytic degradation experiments

In a typical procedure, 2 mg of Fe-pydc was ultrasonically dispersed in 200 mL aqueous solution

of organophosphate (0.05 mM) and placed in a 250 mL beaker. The suspension was stirred for 2 h before reaction to reach the adsorption-desorption equilibrium. The irradiation was started immediately after the addition of H_2O_2 (1.25 mM). At the given reaction time intervals, samples (~5 mL) were taken out and filtered to remove the catalyst. The filtrates were subjected to HPLC, ion chromatography and TOC analysis.

Fig. S1 Framework structure of [Mn(pydc)·2H₂O].

Fig. S2 Thermogravimetric curve of as-synthesized Fe-pydc sample.

Fig. S3 UV-vis diffuse reflectance spectrum of Fe-pydc. The absorption spectra of Fe²⁺ ion and pydc²⁻ ligand in solutions were provided for comparison.

Fig. S4 Degradation kinetics of (a) DENP and (b) TNPP in the catalytic system of Fe-pydc. 0.01 g L^{-1} Fe-pydc, $c_{substrate^0} = 0.05$ mM, $c_{H_{2}O_2^0} = 1.25$ mM, 200 mL H₂O, irradiated by a 300 W Xe lamp cutoff below 420 nm.

Fig. S5 ESR spectra of DMPO-radical adducts formed in Fe-pydc systems. 0.01 g L⁻¹ Fe-pydc, $c_{\text{BNPP}^0} = 0.05 \text{ mM}, c_{\text{H}_2\text{O}_2^0} = 1.25 \text{ mM}.$