Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

New Journal of Chemistry

Electronic Supporting information

Highly selective iodide sensing ability of an anthraquinone derived Schiff base in semi-aqueous medium and its performance as antioxidant, anti-inflammatory and HRBC membrane protection

Vetriarasu Venkatesan^a, S.K. Ashok Kumar^{*a}, Shilpa Bothra^b and Suban K. Sahoo^b

^a Department of Chemistry, School of Advanced Sciences, VIT University, Vellore-632014,

Tamil Nadu, India. E-mail: <u>ashok312002@gmail.com</u>.

^b Department of Applied Chemistry, S. V. National Institute Technology, Surat-395007,

Gujarat, India

Fig. 1S: FT-IR spectra of 3

Fig. 3S: ¹³C NMR spectra of 3

Fig. 4S: HR-MS spectra of 3

Fig. 5S. ¹H NMR titration of receptor 3 with TBAF in DMSO-d₆.

Fig. 6S. (a) ¹H NMR titration (downfield region) of receptor 3 and (b) ¹⁹F NMR of receptor 3 with TBAF in DMSO-d₆.

F	CN-	F^{-} and CN^{-}
	O N O CH _{3HO} ^B OH	NaO ₃ S NaO ₃ S NH ₂ O OH SO ₃ Na NH ₂ O OH
1-(2,7-dioxo-3,7-dihydro-2H- naphtho[1,2,3-de]quinolin-1- yl)pyridinium chloride ^{24a}	1-methyl-2-phenyl-1H- naphtho[2,3-d]imid azole-4,9- dione methylboronate ^{24b}	sodium 4,8-diamino-1,5-dihydroxy- 9,10-dioxo-9,10-dihydroanthracene- 2,6-disulfonate ^{24c}
F-		F^- $H_2 O H_2$ $H_2 O H_2$
(E)-1-(5-bro mo-2- hydro xybenzyliden eamino)anthra cene-9,10-dione ^{24d}	1,1',1",1'''-(9,10-dio xo-9,10-dihydroanthracene-1,4,5,8-tetrayl)tetrakis (3-methylurea) ^{24e}	1,4,5,8-tetraaminoanthracene-9,10- dione ^{24e}
F and AcO	CN ⁻	F and CN ⁻
3-benzyl-1-(2,7-dio xo -3,7- dihydro-2H-naphtho[1,2,3- de]quinolin-1-yl)-1H-imidazol-3- ium chloride ^{24f}	N-(9,10-dio xo-9,10- dihydroanthracen-2-yl)-2,2,2- trifluoroacetamide ^{24g}	sodium ² ,2'-(4-(6,11-dio xo-6,11- dihydro-3H-anthra[1,2-d]imida zol- 2-yl)phenylazanediyl)diacetate ^{24h}
Citrate O HN NH O O F_3C CF_3 O HN NH CF_3 CF_3 H O O	Aspartate and malate O HN - H - H - H - H - H - H - H - H - H	Aspartate and malate O HN H H H H NO_2 O HN H H H NO_2 O HN H H H H NO_2 O HN H H H H H H NO_2
1,1'-(2,2'-(9,10-dio xo-9,10- dihydroanthracene-1,4- diyl)bis(azanediyl)bis(ethane-2,1- diyl))bis(3-(2-o xo-4- (trifluoromethyl)-2H-chromen-7- yl)thiourea) ²⁴ⁱ	(S)-2-(3-(4- nitrophen yl)thiou reido)-N-(2-(4- (2-((R)-2-(3-(4- nitrophen yl)thiou reido)propanami do)ethylamino)-9,10-dio xo-9,10- dihydroanthracen-1- ylamino)ethyl)propanamide ^{24j}	(S)-2-(3-(4-nitronaphthalen-1- yl)thioureido)-N-(2-(4-(2-((R)-2-(3- (4-nitronaphthalen-1- yl)thioureido)propanamido)ethylami no)-9,10-dioxo-9,10- dihydroanthracen-1- ylamino)ethyl)propanamide ^{24j}

Table 1S. Anthraquinone based ligands for anion selective sensors.

Structures	λ _{max} , nm	LOD, (M)	Environmental analysis
1-((2-(2,4-dinitrophenyl) hydrazono)methyl)naphthalen-2-ol ¹⁹	424	1.1 ×10 ⁻⁶	Iodide content in urine
2,2'-(1E, 1'E)-((2E, 2'E)-(2-hy dro xy-5-methyl-1,3- phenylene)bis(methan-1-yl-1-ylidene)bis(hy drazine-2,1- diylidene))bis(methan-1-yl-1-ylidene)diphenol ¹⁷	636	1.2×10^{-7}	Iodide recovery in water and urine
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	441	7×10 ⁻⁶	
N2,N6-bis(2-(4-nit roben za mido)ethyl)pyridine-2,6-d icarbo xa mide 37	365	1×10 ⁻⁶	
N-(2-(2-((1H-benzo[d]imidazol-2-ylamino)methyl)phenoxy) ethyl)(3-(2-((1H-benzo[d]imidazol-2-ylamino)methyl)phenoxy) propyl) amino)ethoxy)benzyl)-1H-benzo[d]imidazol-2-amine ¹⁵	495	2.1×10 ⁻⁶	
((Z)-1-amino-2-((E)-4-(dimethylamino)benzylideneamino) vinylthio) mercury ³⁸	468	4.5×10 ⁻⁷	-
Present work	615 nm	2.7x10 ⁻⁶ M	Iodide recovery in water

Table 2S. Comparison of 3 sensing towards iodide ions with previously reported work.

Target ions	Sample	I Added (µM)	I Found (µM)	Recovery (%)
Iodide ions determination	Drinking water	20	19.77	98.85
	Drinking water	50	48.23	96.46
	Bore well water	20	18.83	94.15
	Bore well water	50	47.37	94.74

Table 3S. Validation of method using actual and spiked system.

Table 4S. Anthraquinone based ligands for biological evaluation.

Name of the	Biological properties studied			
receptors	antioxida nt	anti-inflammatory	HRBC membrane protection ability	Other properties
Anthraquinone-2- Carboxylic Acid ⁴⁰		reported		Antinociceptive activities
4,5-Dihydroxy- 9,10-dioxo-9,10- dihydro anthracene-2- carboxylic acid ⁴¹		reported		Antiarthritic activity
Anthraqino ne ⁴²	reported	Reported (IC 50- 213 ± 22 μM)		
1, 8-Dimethoxy Anthraquinone-2- Methyl Carboxylate ⁴³	reported	reported		
Anthraquinone chalcone hybrids 44				DNA interaction studies
2-hydroxy-9,10- anthraquinone ⁴⁵				Anti-microbial studies
Anthraquinone- Derived Small Molecules ⁴⁶				Anti-cancer
Present work	70.18%	73.42%	72%	

General procedure used in the spectrophotometric experiments

The receptor 3 of 2×10^{-5} M in THF:H₂O (1:1, v/v) was interacted with appropriate amount of various anions (F⁻, CI, Br⁻, I⁻, HSO₄⁻, H₂PO₄⁻ and OH⁻) of 1x10⁻⁴ M in THF:H₂O (1:1, v/v) in separate vials and kept for 1-2 minutes. Then the UV-visible spectra of each individual solutions were taken in the region of 300-800 nm using THF:H₂O (1:1, v/v) solvent medium as blank solution. The receptor 3 ($2x10^{-5}M$, 2 mL) in THF:H₂O (1:1, v/v) was taken in quartz cell and to this solution KI of 1×10^{-4} M was added incrementally in THF:H₂O (1:1, v/v). After each increment addition of KI, the absorbance was recorded. For reversibility studies, the UV-visible spectra of receptor 3 ($2x10^{-5}$ M) in THF:H₂O (1:1, v/v) was recorded. To this solution, 1 eq of KI solution was added and the UV-visible spectra was recorded. In the next step, to the above solution, added 0.5 eq. of CaNO₃ and the spectra was recorded. Finally to complete the reversibility cycle further added 1eq of KI and spectra was recorded. For interference studies, the receptor **3** of 2×10^{-5} M was taken in THF:H₂O (1:1, v/v) and KI of same concentration was added. Followed by, the other anions were taken in three different concentrations (leq, 5 eq and 10 eq) and the spectra were recorded. The detection limit of **3** from the absorption spectral titration with I⁻ was determined by following the equation: LOD: 3σ /slope and LOO: 10σ /slope. Were σ = standard deviation of the blank solution and s = slope of the calibration curve. From the calibration curve plotted at 615 nm, we get slope = 3017, and the σ value of 0.002711 was obtained from the ten reading of the blank sample. Thus using the formula we get the LOD and LOO for $I^{-} = 2.7 \times 10^{-6} \text{ M } \mu\text{M}$ and 8.99×10^{-6} M respectively

The binding constant value of I^- with 3 was obtained from UV-visible titration data with the Benesi-Hildebrand equation.

$$1 / (A - A_0) = 1 / (A_{max} - A_0) + (1 / K_a[I])[1 / (A_{max} - A_0)]$$

Here, K_a is the association constant or binding constant. A₀ is the minimum absorbance at 615 nm, i.e. the absorbance at 615 nm in absence of KI or receptor **3** (2x10⁻⁵ M) alone in THF/H₂O (1:1, v/v) medium. A_{max} is the maximum absorbance at the saturation point obtained after gradual addition of KI solution (1x10⁻⁴ M) and A is the absorbance observed after each addition of KI (20 to 400 μ L). The association constant (K) was determined from the slope of the straight line of the plot of 1/(A-Ao) against 1/[Γ]_n. The association constant (K_a) as determined by UV-vis titration method for sensor with Γ was found to be $1.37 \times 10^4 \text{ M}^{-1}$