Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Supporting information

A joint experimental and theoretical study on the electro-optical properties of 1,6- and 1,7-fluorenyl disubstituted perylene diimide isomers

E. Kozma^a*, W. Mróz^a, A. Andicsová Eckstein^b, Vladimír Lukeš^c, F. Galeotti^a, A. Sisková^b, M. Danko^b, M.Catellani^a ^aIstituto per lo Studio delle Macromolecole , Consiglio Nazionale delle Ricerche, Via A. Corti 12, 20133 Milano, Italy ^bPolymer Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 84541 Bratislava, Slovakia ^cDepartment of Chemical Physics, Slovak University of Technology, Bratislava, Slovakia ^{*}Corresponding author: e-mail: erika.kozma@ismac.cnr.it; Tel +39.02.23699.739 ; Fax: +39.02.70636.400

SI-1. Synthetic procedure, NMR and MALDI-TOF

N, N'-bis-(10-nonadecyl)perylene-3,4,9,10-tetracarboxylic acid diimide PDI

N, N'-bis-(10-nonadecyl)perylene-3,4,9,10-tetracarboxylic acid diimide was obtained by a modified procedure from the literature [1S]. The condensation reaction of 3,4,9,10-perylenetetracarboxylic dianhydride (606 mg, 1.55 mmol) and 10-nonadecanamine (1.07 g, 3.78 mmol) was accomplished by conducting the imidization reaction in the presence of zinc acetate (214 mg, 1.16 mmol) in quinoline (5 ml) at 160 °C for 4 hours under nitrogen atmosphere. The resulting N, N'-bis-(10-nonadecyl)perylene-3,4,9,10-tetracarboxylic acid diimide was isolated in 78% yield as a deep red solid after a silica gel column chromatography purification (hexane:CHCl₃=8:2 as eluent).

¹H-NMR (CDCl₃): δ 0.83 (t, 12H), 1.21 (m, 56H), 1.85 (m, 4H), 2.26 (m, 4H), 5.25 (m, 2H), 8.51 (br, 4H, pery-H), 8.59 (br, 4H, pery-H). IR (KBr, cm⁻¹): υ 2922, 2853, 1694, 1649, 1593, 1465, 1404, 1344, 1254, 1175

Dibromo-N,N'-bis(10-nonadecyl)perylene-3,4,9,10-tetracarboxylic acid diimide PDI-diBr (mixture of 1,6- and 1,7- regioisomers)

Dibromo-N,N'-bis(10-nonadecyl)perylene-3,4,9,10-tetracarboxylic acid diimide was obtained as described in literature [2S]. A mixture of N,N'-bis(nonadecyl)perylene-3,4,9,10-tetracarboxylic acid diimide (100 mg, 0.108 mmol), bromine (1184 mg, 7.4 mmol) in 2 ml CH₂Cl₂ was stirred at 60 °C in a closed vial for 4 hours. The reaction mixture was allowed to reach the room temperature and then, after removing the excess of bromine by air bubbling, the solvent was removed under vacuum. The crude product was purified by a silica gel column chromatography, using hexane:CHCl₃=6:4 as eluent. The first band was collected to afford dibromo-N,N'-bis(10-nonadecyl)perylene-3,4,9,10-tetracarboxylic diimide (as a mixture of 1,7-dibromo and 1,6-dibromo derivative 3:1) as a deep orange solid (108 mg, 92%). ¹H-NMR (CDCl₃): δ 0.85 (t, 12H), 1.25 (m, 56H), 1.85 (m, 4H), 2.25 (m, 4H), 5.20 (m, 2H), 8.70 (br, 2H, pery-H), 8.91 (br, 2H, pery-H), 9.52 (d, 2H, pery-H). IR (KBr, cm⁻¹): v 2919, 2849, 1700, 1660, 1589, 1465, 1382, 1327, 1237

1, 6- (PDI-F1) and 1,7-bis-2[9,9'-dioctylfluorenyl]]-N,N'-bis-(10-nonadecyl)-perylene-3,4,9,10-bis(dicarboximide) (PDI-F2)

A mixture of dibromo-N,N'-bis(10-nonadecyl)perylene-3,4,9,10-tetracarboxylic diimide and 9,9-dioctylfluorene-2-boronic acid pinacol ester (2.04 equivalents) were dissolved in dry toluene (5 ml each 0.25 mmol of dibromo-N,N'-bis(nonadecyl)perylene-3,4,9,10-tetracarboxylic diimide) and 2M K₂CO₃ solution (1 ml each 4 ml of toluene). Catalytic amounts of Pd[PPh₃]₄ were added and the reaction mixture was stirred at 100 °C for 18 hours. Shortly after the addition of the catalyst, the colour of the mixture starts to change. At the end of the reaction time, the solution was cooled to room temperature, extracted with CHCl₃, washed with water, extracted and dried over MgSO₄ anh. concentrated to a smaller volume and dropped into methanol. The precipitate was filtered, and the two isomers were separated by column chromatography, using hexane/CHCl₃ 3:2 as eluent. 1,6-bis-2[9,9'-dioctylfluorenyl]]-N,N'-bis-(10-nonadecyl)-perylene-3,4,9,10-bis(dicarboximide) (PDI-F1) was obtained as a deep red solid in 26% yield. ¹H-NMR(TCE, 600MHz): δ =8.62 (2H, d, pery), 7.92 (2H, d, pery), 7.74 (6H, dd, pery, fluorene), 7.30 (10H, m, fluorene), 5.03 (2H, d, -CH-N), 2.16 (4H, d, -CH₂-), 1.85 (12H, m, -CH₂-), 1.12 (104H, m, -CH₂-), 0.76 (24H, -CH₃).

MEK19-1,6\0_J10\1

HCCA 15% 200sh sum2000

C.I.G.A. (Lab. MS)

0209520 0020763 J10

80 26 66.667 Hz 2000

POS

Instrument type autoflexTOF/TOF Serial instrument number 238420.00069 Name of computer FLEX-PC Operator ID or name Bruker07 flexControl 3.0.185.0

0 ns 19 kV 16.45 kV 8.3 kV 1.405 kV true 190 Da

1,7-bis-2[9,9'-dioctylfluorenyl)]-N, N'-bis-(10-nonadecyl)-perylene-3,4,9,10-bis(dicarboximide) (**PDI-F2**) was obtained as a dark violet solid in 62% yield. ¹H-NMR (TCE, 600MHz): δ =8.64 (2H, d, pery), 7.91 (2H, d, pery), 7.73 (6H, dd, pery, fluorene), 7.31 (10H, m, fluorene), 5.03 (2H, d, -CH-N), 2.07 (4H, d, -CH₂-), 1.89 (12H, m, -CH₂-), 1.13 (104H, m, -CH₂-), 0.76 (24H, -CH₃).

MEK19-1,7\0_G11\1

C.I.G.A. (Lab. MS)

SI-2. Solvent dielectric constants (ε) and the refractive indexes (n) and determination of the orientation polarizability (Δf)

 $\varDelta f = f(\varepsilon) - f(n^2) = (\varepsilon - 1)/(2\varepsilon + 1) - (n^2 - 1)/(2n^2 + 1)$

Solvent	ε	n	ε-1	2 <i>ɛ+</i> 1	<i>n</i> ² -1	2n ² +1	∆f	
Cyclohexane	2.02	1.4262	0.202380952	1.03404644	5.06809288	0.204030681	-0.001649728	
Diethylether	4.33	1.3524	0.344720497	0.82898576	4.65797152	0.17797141	0.166749087	
THF	7.58	1.4072	0.407178218	0.98021184	4.96042368	0.197606475	0.209571742	
Ethylacetate	6.02	1.3724	0.384969325	0.88348176	4.76696352	0.185334282	0.199635043	
Dichloromethane	8.93	1.4241	0.420466596	1.02806081	5.05612162	0.203329921	0.217136675	
DMF	36.7	1.4305	0.47983871	1.04633025	5.0926605	0.205458473	0.274380237	
Chloroform	4.81	1.4458	0.358757062	1.09033764	5.18067528	0.210462455	0.148294607	

Fig. 1S. The side and frontal views on the B3LYP optimal geometries of the calculated model molecules in the electronic ground state. Propyl and iso-heptyl groups replace the C_8H_{17} and $CH(C_9H_{19})$ groups for clarity. Symmetry point group is indicated after slash symbols.

Fig. 1S (continued). The side and frontal views on the B3LYP optimal geometries of the calculated model molecules in the electronic ground state. Propyl and iso-heptyl groups replace the C_8H_{17} and $CH(C_9H_{19})$ groups for clarity. Symmetry point group is indicated after slash symbols.

Fig. 1S (continued). The side and frontal views on the B3LYP optimal geometries of the calculated model molecules in the electronic ground state. Propyl and iso-heptyl groups replace the C_8H_{17} and $CH(C_9H_{19})$ groups for clarity. Symmetry point group is indicated after slash symbols.

Fig. 2S. The bond notations and the definition of dihedral angles for studied molecules. For **BIS** and **PD1-F1** are $\vartheta_1(i'-l')$, $\vartheta_2(i-l)$, $\vartheta_3(i-l')$ and $\vartheta_4(i-i')$. The dihedral angles Ω/Ω^* represent the torsion between the central bonds n,n'or i,i' with respect to the fluorenyl central plane.

Fig. 35. The torsional dependence of relative electronic B3LYP energy on the dihedral angle Ω_1 for the calculated PDI-F1 (left) and PDI-F2 (right) molecules. Relative energies are calculated with respect to the global minima, i.e. PDI-F1(II) and PDI-F2(I).

BIS / C_{2v}

PDI-F1(I) / Cs

Fig. 4S. The selected B3LYP frontier orbitals for the symmetric geometries of **BIS**, **PID-F1(I)** and **PDI-F2(II)**. The orbital symmetry is indicated after slash symbol. The depicted iso-contour value is 0.03 au.

PDI-F2(I) / C2

Fig. 4S (continued). The selected B3LYP frontier orbitals for the symmetric geometries of BIS, PID-F1(I) and PDI-F2(II). The orbital symmetry is indicated after slash symbol. The depicted iso-contour value is 0.03 au.

Fig. 55. The torsional dependence of TD-B3LYP vertical excitation energies on the dihedral angle Ω for the calculated PDI-F1 (left) and PDI-F2 (right) molecules.

	ϑ_1	ϑ₂	ϑ_3	ϑ_4	Ω / deg	Ω
	/ deg	/ deg	/ deg	/ deg		/ deg
BIS	180	180	0	0	-	-
	180	180	0	0	-	-
PDI-F1(I)	348	12	0	0	233	127
	348	12	0	0	219	141
PDI-F1(II)	21	21	328	324	232	57
	20	20	330	325	218	47
PDI-F1(III)	21	20	328	324	231	237
	19	19	330	325	221	221
PDI-F2(I)	20	20	327	327	54	54
	19	19	328	328	41	41
PDI-F2(II)	20	20	327	327	53	230
	19	19	328	328	41	217
PDI-F1(I)-alkyl	348	12	0	0	231	129
	349	11	0	0	221	141
PDI-F1(II)-alkyl	340	340	29	35	298	301
	342	342	26	34	312	302
PDI-F2(I)-alkyl	19	19	329	329	57	57
	19	19	328	328	39	39
PDI-F2(II)-alkyl	19	19	329	329	57	229
	19	18	329	329	44	215

Table 1S. The selected dihedral angles for the optimal (TD-)B3LYP geometries of the electronic ground (S_0) and lowest energy excited (S_1) states. The data for S_1 are written in italic.

Bond	BIS	BIS	PDI-F2(I)	PDI-F2(I)	PDI-F1(I)	PDI-F1(I)
	So	S1	So	S1	So	S ₁
а	1.393	1.392	1.394	1.394	1.392	1.394
b	1.215	1.219	1.393	1.394	1.216	1.220
С	1.488	1.481	1.216	1.220	1.487	1.478
d	1.422	1.421	1.215	1.220	1.421	1.417
e	1.386	1.403	1.486	1.479	1.384	1.394
f	1.433	1.433	1.488	1.479	1.438	1.434
g	1.401	1.385	1.381	1.392	1.399	1.448
h	1.434	1.432	1.420	1.422	1.436	1.435
l	1.398	1.426	1.421	1.418	1.401	1.425
j	1.473	1.446	1.386	1.401	1.477	1.448
k	1.434	1.432	1.401	1.387	1.445	1.435
l	1.398	1.426	1.430	1.434	1.421	1.425
m	1.433	1.433	1.415	1.403	1.432	1.438
n	1.401	1.385	1.416	1.444	1.412	1.389
0	1.422	1.421	1.437	1.432	1.418	1.421
р	1.386	1.403	1.436	1.436	1.379	1.398
r	1.488	1.481	1.400	1.422	1.487	1.480
S	1.215	1.219	1.476	1.449	1.216	1.220
t	1.393	1.392	1.476	1.449	1.392	1.393
ΣΔd		-0.017		0.012		-0.039
Σ /Δd/		0.179		0.196		0.213

Table 2S. The (TD-)B3LYP bond lengths of symmetric **BIS**, **PDI-F1** and **PDI-F2** compounds for the electronic ground state (S_0) and lowest excited state (S_1) geometries. The sum of bond differences ($\Sigma\Delta d$) and the sum of absolute bond ($\Sigma /\Delta d$ /) differences are calculated between the geometries of S_0 and S_1 states. All bond lengths are in angstroms.

Table 3S. The lowest three TD-(CAM-)B3LYP//(TD-)B3LYP vertical optical transitions for the studied model molecules. The oscillator strengths are written after slash symbol. The values in parentheses stand for percentages of the excitation contributions in individual transitions.

Molecule		TD-B3LYP	TD-CAM-B3LYP			
	(S₀→	≻S _{1/2/3})	(S1→S0)	(S ₀ →S _{1/2/3})	(S1→S0)	
BIS	509 nm / 0.614	H → L (0.99)	561 nm / 0.594	453 nm / 0.736	605 nm / 0.384	
	394 nm / 0.000	H−1 → L (0.95)		328 nm / 0.000		
	394 nm / 0.000	H → L (0.95)		309 nm / 0.063		
PDI-F1(I)	602 nm / 0.215	$H \rightarrow L (0.95)$	725 nm / 0.204	494 nm / 0.472	600 nm / 0.378	
	555 nm / 0.151	H−1 → L (0.99)		395 nm / 0.294		
	475 nm / 0.246	$H-2 \rightarrow L (0.94)$		349 nm / 0.133		
PDI-F1(II)	609 nm / 0.168	$H \rightarrow L (0.96)$	730 nm / 0.152	493 nm / 0.398	591 nm / 0.315	
	561 nm / 0,153	H−1 \rightarrow L (0.99)		396 nm / 0.291		
	470 nm / 0.244	$H-2 \rightarrow L (0.96)$		345 nm / 0.162		
PDI-F1(III)	606 nm / 0.176	$H \rightarrow L (0.96)$	726 nm / 0.158	490 nm / 0.418	590 nm / 0.329	
	557 nm / 0.139	H−1 \rightarrow L (0.99)		393 nm / 0.273		
	468 nm / 0.253	H−2 → L (0.95)		344 nm / 0.155		
PDI-F2(I)	618 nm / 0.260	$H \rightarrow L (0.96)$	741 nm / 0.272	499 nm / 0.446	605 nm / 0.384	
	543 nm / 0.022	H−1 → L (0.99)		386 nm / 0.042		
	475 nm / 0.290	H−2 → L (0.95)		356 nm / 0.415		
PDI-F2(II)	621 nm / 0.276	$H \rightarrow L (0.97)$	742 nm / 0.289	501 nm / 0.461	603 nm / 0.407	
	545 nm / 0.018	H−1 → L (0.99)		387 nm / 0.037		
	472 nm / 0.290	H−2 → L (0.95)		355 nm / 0.426		
PDI-F1(I)-alkyl	608 nm / 0.275	H → L (0.95)	727 nm / 0.253	502 nm / 0.563	604 nm / 0.466	
	557 nm / 0.157	H−1 → L (0.99)		398 nm / 0.306		
	477 nm /0.276	H−2 → L (0.94)		349 nm / 0.153		
PDI-F1(II)-alkyl	608 nm / 0.207	H → L (0.96)	719 nm / 0.190	494 nm / 0.501	589 nm / 0.401	
	562 nm / 0.114	H−1 → L (0.99)		392 nm / 0.231		
	483 nm / 0.290	H−2 → L (0.95)		350 nm / 0.159		
PDI-F2(I)-alkyl	621 nm / 0.271	$H \rightarrow L (0.96)$	762 nm / 0.281	503 nm / 0.512	621 nm / 0.415	
	548 nm / 0.017	H−1 → L (0.99)		386 nm / 0.035		
	483 nm / 0.332	H−2 → L (0.95)		359 nm / 0.407		
PDI-F2(II)-alkyl	625 nm / 0.308	$H \rightarrow L (0.97)$	753 nm / 0.318	505 nm / 0.542	613 nm / 0.469	
	550 nm / 0.015	H−1 → L (0.99)		388 nm / 0.031		
	480 nm / 0.330	H−2 → L (0.96)		358 nm / 0.429		

Molecule	Cyclohexane		Chloroform		Cycle	ohexane	Chloroform	
	(S ₀ →S ₁)	(S ₁ →S ₀)	(S ₀ →S ₁)	(S ₁ →S ₀)	, (S ₀ →S ₁)	$(S_1 \rightarrow S_0)$	(S ₀ →S ₁)	$(S_1 \rightarrow S_0)$
PDI-F1(I)-alkyl	624 nm /	761 nm/	628 nm	768 nm/	517 nm	631 nm/	519 nm /	635 nm/
	0.347	0.327	/0.351	0.330	/0.683	0.576	0.694	0.586
PDI-F1(II)-alkyl	624 nm / 0.293	745 nm/ 0.262	627 nm /0.301	749 nm/ 0.269	509 nm / 0.637	611 nm/ 0.524	511 nm / 0.649	614 nm/ 0.536
PDI-F2(I)-alkyl	639 nm/	794 nm	643 nm /	798 nm /	519 nm /	646 nm /	521 nm /	648 nm /
	0.356	/0.359	0.362	0.365	0.643.	0.523	0.654	0.533
PDI-F2(II)-alkyl	645 nm / 0.391	785 nm / 0.395	648 nm / 0.396	786 nm / 0.395	522 nm / 0.667	639 nm / 0.575	524 nm / 0.678	641 nm / 0.585

 Table 4S. The lowest TD-(CAM-) B3LYP(SMD)//(TD-)B3LYP vertical optical transitions for the largest studied model molecules. The oscillator strengths are written after slash symbol.

[1] Wescott LD, Mattern DL, Donor-σ-acceptor molecules incorporating a nonadecyl-swallow tailed perylenediimide acceptor, J Org Chem 2003;68:10058.

[2] Rajasingh P, Cohen R, Shirman E, Shimon LJW, Rybtchinski B, Selective bromination of perylene diimides under mild conditions, J Org Chem 2007;72:5973.