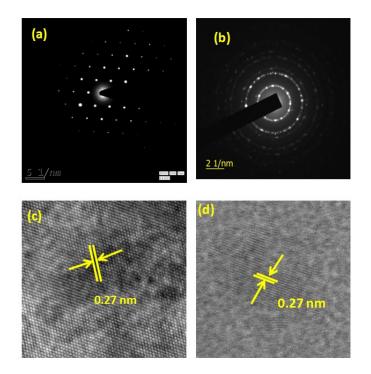
Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Supporting Information (SI)

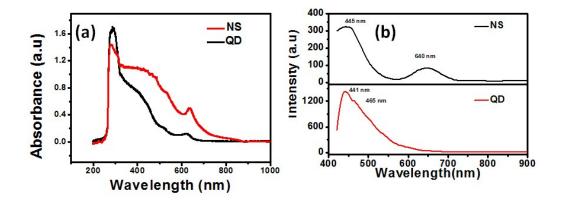
Superior Charge Storage Performance of WS₂ Quantum dots in a Flexible Solid State Supercapacitor

Arup Ghorai,^a Anupam Midya^{a*} and Samit K Ray^{b,c}

^aSchool of Nanoscience and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India,


^bDepartment of Physics, Indian Institute of Technology Kharagpur, Kharagpur 721302

^c S. N. Bose National Centre for Basic Sciences, Kolkata 700 106, India


Equation- 1: Bohr's Equation:

$$R_B = \frac{\hbar^2 E}{e^2} \left(\frac{1}{m_e^*} + \frac{1}{m_h^*} \right)$$

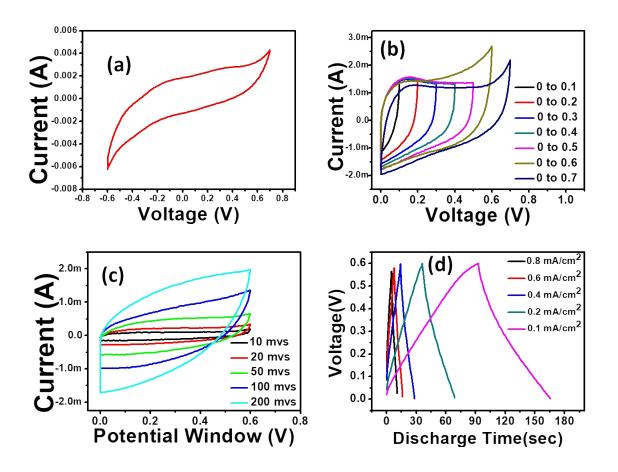

Where \hbar is the reduced Planck's constant, m_e^* and m_h^* are the effective masses of electrons and holes, respectively, e is the electronic charge, and ε is the relative permittivity of WS₂. The carrier effective masses are taken as $m_e^* = 0.39m_o$ and $m_h^* = 0.40m_o$ from the literature, where m_o is the electronic rest mass¹. The dielectric permittivity of WS₂ has been reported to be strongly dependent on the number of layers².

Figure S1: (a Typical selected area electron diffraction pattern of WS_2 (a)NS and (b)QD (b); high resolution TEM image of WS_2 (c)NS and (d)QD.

Figure S2: Comparison of (a) UV-Vis spectra and (b) photoluminescence spectra of NS and QD.

Figure S3: CV curve of the QD-based device in three electrode system using H_3OP_4 -PVA at a scan rate of 10 mv/s; (b) cyclic voltammogram of the solid state QD-based device at

different voltage window; (c) cyclic voltammogram and (d) charge discharge of the NS based solid state device under the same condition in which QD-base device is measured.

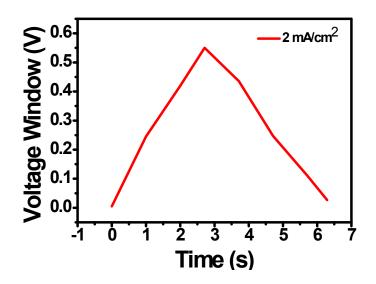


Figure S4: Charge-discharge of WS₂ QD-based device at a current density of 2mA/cm².

^{1.} A. Kormányos, V. Zólyomi, N. D. Drummond, and G. Burkard, *Phys. Rev. X*, 2014, 4, 011034.

^{2.} A. Kumar, P. K. Ahluwalia, Physica B, 2012, 407, 4627-4634.