Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

> Electronic Supplementary Information (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Identifier 2017

Supplementary Information

Effect of Speciation Transformation of Manganese on Aggregation and Deposition of Graphene Oxide

Min Shu^a, Xiang Gao^a, Guiwei Li^{b,c}, Weihuang Zhu^a, Haotian Hao^d, Baoyou Shi^{b,c,*}

^a School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.

^b State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.

^c University of Chinese Academy of Sciences, Beijing 100049, China.

^d College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China

^{*} Corresponding author. E-mail: byshi@rcees.ac.cn, Tel: +86-10-62924821

Fig. S1 (A) Optical images of GO aggregation tests with GO concentration from 5 to 100 mg/L in the presence of different Mn(II) concentration. (B) Concentrations of residual GO flakes in the supernatant as a function of Mn(II) concentration. pH of

solution was fixed 7 ± 0.1 .

UV-vis Absorption Spectroscopy of GO at Different GO Concentrations

The absorbance of different concentrations of GO was determined by UV-vis spectrophotometry (Agilent 8453, USA). The UV-vis absorption spectroscopy results for GO as a function of GO concentrations are presented in Fig. S2. The optimum wavelength of GO was determined to be 230 nm (Fig. S2A). An R^2 > 0.99 for the calibration curve of GO at 230 nm suggested that the GO absorbance results can be directly correlated to their concentrations (Fig. S2B).

Fig. S2 UV-Vis absorption spectra of GO and standard curve at absorbance of 230 nm.

Fig. S3 (A) Optical images of GO in the presence of different $Mn(NO_3)_2$ concentration. (B) Concentrations of the residual of GO in the supernatant as a function of $Mn(NO_3)_2$ concentration. (C) Zeta potentials of GO as a function of $Mn(NO_3)_2$ concentration. (D) Wavelength scanning spectra of GO, $Mn(NO_3)_2$ and $MnSO_4$, pH=7.0±0.1, $C_{(GO)initial}=10$ mg/L.

Fig. S4 (A) Optical images of only GO at different pH conditions. (B) Optical images of GO with addition 0.3 mM Mn(II) at different pH conditions, I=0.005 mol/L NaCl (NaCl was served as an electrolyte in order to adjusting pH of solution)

Fig. S5 Dissolved manganese in the presence and absence of GO in the supernatant. $C_{(GO)initial}=10 \text{ mg/L}, C_{(Mn)initial}=0.3 \text{ mmol/L}, \text{ DO}= 8.0 \pm 0.3 \text{ mg/L}.$

Fig. S6 (A) Dissolved manganese at different pH conditions. (B) Optical images of residual GO at different pH conditions in anoxic conditions. $C_{(GO)initial}=10 \text{ mg/L}$, $C_{(Mn)initial}=0.3 \text{ mM}$. Reactions were carried out under anoxic conditions (DO= 0.12 ± 0.03mg/L).

Fig. S7 XPS pattern of GO /manganese aggregates at pH

Fig. S8 (A) Optical images of GO with 0.3 mM MnO₂ in various pH conditions. (B) Only 0.3 mM MnO₂ at different pH values C_{(GO)initial}=10 mg/L, C_{(MnO2)initial}=0.3 mM I=0.005 mol/L NaCl. (NaCl was served as an electrolyte in order to adjusting pH of the solutions.)