Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Electronic Supplementary Information

A novel pyrene based dual-multifunctional fluorescence probe for

differential sensing of pH and HSO₃⁻ and its bioimaging in live cells

Jianbin Chao*a, Huijuan Wang^{a,b}, Yongbin Zhang^a, Caixia Yin^c, Fangjun Huo^a,

Jinyu Sun^d, Minggen Zhao^d,

^a Research Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, P.R. China

^b School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China

^c Institute of Molecular Science, Shanxi University, Taiyuan 030006, China

^d School of Chemistry and Chemical Engineering, Xinzhou Teachers University, Xinzhou 034000,

China

Contents

1. Cytotoxicity assays in cells

2. Method for determination of the fluorescence quantum yield

3. Figures captions:

Fig. S1. ¹H NMR spectra of probe in DMSO-d₆.

Fig. S2. ¹³C NMR spectra of probe in DMSO-d₆.

Fig. S3. HRMS spectra of probe.

Fig. S4. HRMS spectra of probe - HSO₃⁻.

Fig. S5 (a) The ratios of fluorescence intensity of **probe** (15.0 μ M) containing diverse species in CH₃CN/ H₂O (1/3, V/V) at pH 7.10 and pH 4.00. Conditions: λ ex = 370 nm, Ex/Em slit = 5/5 nm. (b) Fluorescence responses (455 nm) of **probe** (15.0 μ M) containing diverse species in CH₃CN/ H₂O (1/19, V/V) at pH 7.10 and 8.50. Conditions: λ ex = 370 nm, Ex/Em slit = 2.5/5 nm. Ca²⁺ (10 mM); Na⁺ (150 mM); K⁺ (150 mM); other metal ions with 0.2 mM, cysteine (1 mM); homocysteine (1 mM); glutathione (1 mM); glycine (1 mM); valine (1 mM); arginine (1 mM); lysine (1 mM); tyrosine (1 mM).

Fig. S6 (a) Time courses of fluorescence emission ratios $I_{460 \text{ nm}}/I_{414 \text{ nm}}$ in various pH values (7.10, 4.50 and 2.50, respectively). Conditions: $\lambda_{ex} = 370 \text{ nm}$, Ex/Em slit = 5/5 nm. (b) Changes in the fluorescence intensity at 455 nm for **probe** (15.0 μ M) in CH₃CN/ H₂O (1/19, V/V) at pH 7.40, 10.30, 12.30, respectively. Conditions: $\lambda_{ex} = 370 \text{ nm}$, Ex/Em slit = 2.5/5 nm.

Fig. S7 (a) Reversible changes in the fluorescence emission ratio ($I_{460 \text{ nm}}/I_{414 \text{ nm}}$) for **probe** (15.0 μ M) in CH₃CN/H₂O (1/3, v/v) system between pH 7.10 and 1.36. Conditions: $\lambda_{ex} = 370 \text{ nm}$, Ex/Em slit = 5/5 nm. (b) Changes in the fluorescence intensity of **probe** (15.0 μ M) in CH₃CN/H₂O (1/19, v/v) system at

455 nm between pH 7.10 and 13.09. Conditions: $\lambda ex = 370$ nm, Ex/Em slit = 2.5/5 nm.

Fig. S8 Effect of pH on the fluorescent intensity of **probe** addition reaction system by bisulfite. **Fig. S9** Time-dependent fluorescence spectra of **probe** (15.0 μ M) with HSO₃ - (50.0 nM) in PBS buffer (pH = 5.00, 1.5% DMSO). Conditions: λ ex = 420 nm, Ex/Em slit = 5/10 nm.

Table S1 Comparison of probe with the reported fluorescence probes for HSO3-

Fig. S10 The fluorescence intensity of **probe** (15.0 μ M) with HSO₃⁻ (70.0 nM) and other various analytes (100 equiv.) in the PBS buffer (pH = 5.00, 1.5% DMSO).Conditions: λ ex = 420 nm, Ex/Em slit = 5/10 nm.

Fig. S11 Fluorescence intensity of **probe** (15.0 μ M) at 555 nm in PBS buffer (pH = 5.00, 1.5% DMSO) to various anions (30 equiv.), and it's competition graph with bisulfite. Black bar: **probe** + various species. Red bar: **probe** + various species + bisulfite. $\lambda_{ex} / \lambda_{em} = 420/555$ nm. Ex/Em slit = 5/10 nm.

Fig. S12 Partial ¹H NMR spectrum of probe and probe - OH⁻ in DMSO-d6.

Figure S13 (a) Absorbance spectral changes of **probe** in DMSO, upon increasing the concentration of water (0-100%) (Note: the spectra were taken after 18 hours). (b) Fluorescence spectra of **probe** in DMSO upon increasing the concentration of water from 0% to 100%. (Note: the spectra were taken after 18 hours).

Figure S14 (a) Absorbance spectral changes of **probe** in CH_3CN , upon increasing the concentration of water (0-100%) (Note: the spectra were taken after 18 hours). (b) Fluorescence spectra of **probe** in CH_3CN upon increasing the concentration of water from 0% to 100%. (Note: the spectra were taken after 18 hours).

Table S2 The quantum yield (Φ) of probe in DMSO upon increasing the concentration of water

from 0 % to 100%.

Table S3 The quantum yield (Φ) of **probe** in CH₃CN upon increasing the concentration of water from 0 % to 100%.

Fig S15 Cytotoxicity data results obtained from the MTT assay.

1. Cytotoxicity assays in cells

The A549 cells were maintained in a humidified atmosphere containing 5% CO₂ at 37 °C in DMEM supplemented with 100 units of penicillin, 100 μ g mL–1 of streptomycin, and 10% fetal bovine serum. The cytotoxicitie (IC50) of **probe** was determined using a MTT assay, a standard method to detect cell survival fraction, by incubating A549 cells. Briefly, the cells with a density of 1×10⁴ cells well⁻¹ were cultured in 96-well glass-bottom plates for 48 h under 5% CO₂. Then the cells were incubated with various concentrations of **probe** (0, 1, 5, 10, 15, 20, 40, 60, 80, 100 μ M) for 12h. At least six parallel samples were created in each group. After that, the suspension medium was removed and 10 μ L (5 mg/mL in PBS pH = 7.40) MTT (5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide) was added to each well and performed for 4 h. When the incubation was finished, culture supernatants were aspirated away and purple formazan crystals were dissolved into 150 μ L of DMSO for additional incubation of 15 min, China). The cell viability was estimated according to the following equation:

Inhibition rate (IR %) = $[OD (control) - OD (drug treated cell)]/ [OD(control)] \times 100\%$

2. Method for determination of the fluorescence quantum yield

For determination fluorescence quantum yields (Φ) of **probe**, the quinine sulphate in 0.1 M H₂SO₄ solution was used as a fluorescence standard ¹. The fluorescence quantum yields (Φ) were obtained using the following equation:

 $\Phi = \Phi \text{ ref} \times [\text{F sample/F ref}] \times [\text{A ref/A sample}] \times [\Pi \text{ sample} / \Pi \text{ref}]^2$ where sample and ref indicated the unknown and standard solution, respectively. $\Phi =$ quantum at the exaction wavelength, and $\Pi =$ refractive index of the solvent. Here Φ ref measurements were performed using quinine sulphate in 0.1 M H₂SO₄ as a standard [$\Phi = 0.546$].

3. Figures captions:

Fig. S1. ¹H NMR spectra of probe in DMSO-d₆.

Fig. S2. ¹³C NMR spectra of probe in DMSO-d₆.

Fig. S3. HRMS spectra of probe.

Fig. S4. HRMS spectra of probe - HSO₃⁻.

Fig. S5 (a) The ratios of fluorescence intensity of **probe** (15.0 μ M) containing diverse species in CH₃CN/ H₂O (1/3, V/V) at pH 7.10 and pH 4.00. Conditions: λ ex = 370 nm, Ex/Em slit = 5/5 nm. (b) Fluorescence responses (455 nm) of **probe** (15.0 μ M) containing diverse species in CH₃CN/ H₂O (1/19, V/V) at pH 7.10 and 8.50. Conditions: λ ex = 370 nm, Ex/Em slit = 2.5/5 nm. Ca²⁺ (10

mM); Na⁺ (150 mM); K⁺ (150 mM); other metal ions with 0.2 mM, cysteine (1 mM); homocysteine (1 mM); glutathione (1 mM); glycine (1 mM); valine (1 mM); arginine (1 mM); lysine (1 mM); tyrosine (1 mM).

Fig. S6 (a) Time courses of fluorescence emission ratios $I_{460 nm}/I_{414 nm}$ in various pH values (7.10, 4.50 and 2.50, respectively). Conditions: $\lambda_{ex} = 370 nm$, Ex/Em slit = 5/5 nm. (b) Changes in the fluorescence intensity at 455 nm for **probe** (15.0 μ M) in CH₃CN/ H₂O (1/19, V/V) at pH 7.40, 10.30, 12.30, respectively. Conditions: $\lambda_{ex} = 370 nm$, Ex/Em slit = 2.5/5 nm.

Fig. S7 (a) Reversible changes in the fluorescence emission ratio (I_{460 nm}/I_{414 nm}) for probe (15.0

 μ M) in CH₃CN/H₂O (1/3, v/v) system between pH 7.10 and 1.36. Conditions: $\lambda_{ex} = 370$ nm, Ex/Em slit = 5/5 nm. (b) Changes in the fluorescence intensity of **probe** (15.0 μ M) in CH₃CN/H₂O (1/19, v/v) system at 455 nm between pH 7.10 and 13.09. Conditions: λ ex = 370 nm, Ex/Em slit = 2.5/5 nm.

Fig. S8 Effect of pH on the fluorescent intensity of probe addition reaction system by bisulfite.

Fig. S9 Time-dependent fluorescence spectra of **probe** (15.0 μ M) with HSO₃ ⁻ (50.0 nM) in PBS buffer (pH = 5.00, 1.5% DMSO). Conditions: $\lambda ex = 420$ nm, Ex/Em slit = 5/10 nm.

Table S1 Comparison of probe with the reported fluorescence probes for HSO₃-

Probe	Response	Detection	Solution	Reference	
	time	limit			
	5 min	100 nM	Water-	Dyes Pigments,	
			DMSO	2017 ²	
			(99/1,V/V)		
N-0	a few	28200 nM	Britton-	Sens Actuators	
NO ₂ OMe	minutes		Robinson	B:Chemica,	
			buffer	2017 ³	
			(20 mM, pH		
			7)-DMSO		
			(99/1,		
			V/V)		
	7.7 min	3060 nM	Sugar (5.0 g	Talanta, 2017 ⁴	
			per/100 Ml)		
	20 min	100 nM	HEPES (10	Dyes	
			mM, pH	Pigments, 2017	
			7.40)	5	
			THF/H ₂ O		
			(1/1,V/V)		

Et2N 0 0 NH	60 min	53 nM	DMF-PBS	Ana. Chim.
0 N			buffer(10m	Acta, 2015 ⁶
			M,3:7,V/V)	
° °	1 h	300 nM	PBS	Ana. Chim.
P P			buffer(20	Acta, 2013 ⁷
			mM)	
			Containing	
			1mM	
			СТАВ	
	5 min	1.9 nM	PBS (pH 5,	This work
$ \not \to \neg \rangle$			1.5%DMSO	
)	

Fig. S10 The fluorescence intensity of **probe** (15.0 μ M) with HSO₃⁻ (70.0 nM) and other various analytes (100 equiv.) in the PBS buffer (pH = 5.00, 1.5% DMSO).Conditions: λ ex = 420 nm, Ex/Em slit = 5/10 nm.

Fig. S11 Fluorescence intensity of probe (15.0 μ M) at 555 nm in PBS buffer (pH = 5.00, 1.5% DMSO) to various anions (30 equiv.), and it's competition graph with bisulfite. Black bar: probe + various species + bisulfite. $\lambda_{ex} / \lambda_{em} = 420/555$ nm. Ex/Em slit = 5/10 nm.

Fig. S12 Partial ¹H NMR spectrum of probe and probe - OH⁻ in DMSO-d6.

Figure S13 (a) Absorbance spectral changes of **probe** in DMSO, upon increasing the concentration of water (0-100%) (Note: the spectra were taken after 18 hours). (b) Fluorescence spectra of **probe** in DMSO upon increasing the concentration of water from 0%

to 100%. (Note: the spectra were taken after 18 hours).

Figure S14 (a) Absorbance spectral changes of probe in CH_3CN , upon increasing the concentration of water (0-100%) (Note: the spectra were taken after 18 hours). (b)

Fluorescence spectra of **probe** in CH_3CN upon increasing the concentration of water from 0 % to 100%. (Note: the spectra were taken after 18 hours).

Table S2 The quantum yield (Φ) of probe in DMSO upon increasing the concentration of water

from 0 % to 100%.

f_{w}	0%	20%	40%	50%	60%	75%	80%	90%	100%
Φ	0.078	0.060	0.081	0.109	0.173	0.199	0.121	0.065	0.013

Table S3 The quantum yield (Φ) of probe in CH₃CN upon increasing the concentration of water

from 0 % to 100%.

$f_{\rm W}$	0%	20%	40%	50%	60%	75%	80%	90%	100%
Φ	0.029	0.050	0.061	0.066	0.090	0.106	0.100	0.054	0.013

Fig. S15 Cytotoxicity data results obtained from the MTT assay.

References

1. A.N. Fletcher, Photochemistry and photobiology, 1969, 9, 439-444.

- 2. J. Wu, Y. Qu, L. Wang, L. Huang, Y. Rui, J. Cao, J. Xu, *Dyes and Pigments*, **2017**, 136, 175-181.
- M. Gómez, E.G. Perez, V. Arancibia, C. Iribarren, C. Bravo-Díaz, O. García-Beltrán, M.E.
 Aliaga, Sensors and Actuators B: Chemical, 2017, 238, 578-587.

4. Q. Sun, W. Zhang, J. Qian, Talanta, 2017, 162, 107-113.

5. X. Yang, Y. Cui, Y. Li, L. Zheng, L. Xie, R. Ning, Z. Liu, J. Lu, G. Zhang, C. Liu, G. Zhang,

Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy, 2015, 137, 1055-1060.

 X. Dai, T. Zhang, Z.F. Du, X.J. Cao, M.Y. Chen, S.W. Hu, J.Y. Miao, B.X. Zhao, Ana. Chim. Acta, 2015, 888, 138–145.

7. H. Tian, J. Qian, Q. Sun, H. Bai, W. Zhang, Ana. Chim. Acta, 2013,788, 165-170.