## **Supporting Information**

## A turn-on fluorescence BOPHY probe for Cu<sup>2+</sup> ions

## detection

Chunhua He<sup>ac</sup>, Huipeng Zhou<sup>a\*</sup>, Na Yang<sup>a</sup>, Niu Niu<sup>ab</sup>, Ejaz Hussain<sup>ab</sup>, Yongxin Li<sup>a</sup>, Cong Yu<sup>ab\*</sup>

<sup>a</sup> State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied

Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China

<sup>b</sup> University of Chinese Academy of Sciences, Beijing, 100049, P. R. China

<sup>c</sup> Changchun University of Science and Technology, Weixing Road, No. 7989, Changchun

130022, P. R. China

\*Corresponding authors

Fax: +86-431-85262710

E-mail: congyu@ciac.ac.cn, hpzhou@ciac.ac.cn



Figure S1. <sup>1</sup>H-NMR (500 MHz) spectrum of BOPHY-PTZ in CDCl<sub>3</sub>.



Figure S2. <sup>13</sup>C-NMR (125 MHz) spectrum of BOPHY-PTZ in CDCl<sub>3</sub>.



Figure S3. IR spectrum of BOPHY-PTZ.



Figure S4. MS spectrum of BOPHY-PTZ.



**Figure S5.** UV-vis absorption (a) and fluorescence emission (b) spectra of compound 2, compound 3, and BOPHY-PTZ in acetonitrile (2  $\mu$ M).

| Compound  | Absorption (nm)    | $\Phi_{\rm F}$    |
|-----------|--------------------|-------------------|
| 2         | 258, 312, 438, 458 | 0.95ª             |
| 3         | 251, 307           | 0.01 <sup>b</sup> |
| BOPHY-PTZ | 256, 310, 530      | $0.002^{\circ}$   |

Table S1. Photophysical data of compounds in acetonitrile.

Fluorescence quantum yield was obtained using a reference method. <sup>a</sup>Diphenylanthracene ( $\Phi = 0.85$  in benzene) was used as a standard (excited at 390 nm). <sup>b</sup>Quinine sulfate ( $\Phi = 0.52$  in 0.05 M H<sub>2</sub>SO<sub>4</sub>) was used as standard (excitation at 350 nm). <sup>c</sup>Rhodamine 6G ( $\Phi = 0.95$  in EtOH) was used as the standard (excitation at 530 nm).



**Figure S6.** MS spectrum of BOPHY-PTZO. Sample solution was prepared by mixing BOPHY-PTZ (2  $\mu$ M) with Cu<sup>2+</sup> (20  $\mu$ M) in CH<sub>3</sub>CN-H<sub>2</sub>O solvent mixture (CH<sub>3</sub>CN: 99.75%) for 10 min at an ambient temperature.



**Figure S7.** Cyclic voltammogram of BOPHY-PTZ, scan rate: 50 mV·s<sup>-1</sup>. (Left): in CH<sub>3</sub>CN, (right): in H<sub>2</sub>O.

| Compound   | E <sub>(ox)</sub> [V]<br>vs NHE        | E <sub>0-0</sub><br>eV <sup>c</sup> | E <sub>LUMO</sub><br>(eV) <sup>d</sup> | E <sub>HOMO</sub><br>(eV) <sup>d</sup> | E <sub>g</sub><br>(eV) <sup>e</sup> | E <sub>HOMO</sub><br>(eV) <sup>f</sup> | E <sub>LUMO</sub><br>(eV) <sup>g</sup> | ∆G<br>(eV) <sup>h</sup> |
|------------|----------------------------------------|-------------------------------------|----------------------------------------|----------------------------------------|-------------------------------------|----------------------------------------|----------------------------------------|-------------------------|
| BOPHY-PTZ  | 0.90 <sup>a</sup><br>0.83 <sup>b</sup> | 2.15                                | -2.47                                  | -4.99                                  | 2.52                                | -5.03                                  | -2.88                                  | -0.29<br>0.68           |
| BOPHY-PTZO |                                        |                                     | -2.47                                  | -5.19                                  | 2.72                                |                                        |                                        |                         |

Table S2. Electrochemical data and energy levels of BOPHY-PTZ and BOPHY-PTZO.

<sup>a</sup>E<sub>(ox)</sub> = E<sub>(ox)-Ag/AgCl</sub> + 0.197, E<sub>(ox)-Ag/AgCl</sub> is the ground state oxidation potential (first oxidation peak) of the BOPHY-PTZ which is measured with Ag/AgCl as the reference electrode in acetonitrile. <sup>b</sup>E<sub>(ox)</sub> = E<sub>(ox)-SCE</sub> + 0.242, E<sub>(ox)-SCE</sub> is the ground state oxidation potential (first oxidation peak) of the BOPHY-PTZ which is measured with SCE as the reference electrode in acetonitrile. <sup>c</sup>E<sub>0-0</sub> was determined from the edge of the absorption spectrum. <sup>d</sup>The HOMO and LUMO energy levels were obtained using density functional theory (DFT) at B3LYP/6-31G\*. <sup>c</sup>E<sub>g</sub> = E<sub>LUMO</sub> - E<sub>HOMO</sub>. <sup>f</sup>E<sub>HOMO</sub> = -(4.8 - E<sub>FC</sub> + E<sub>(ox)-Ag/AgCl</sub>) eV. E<sub>FC</sub> was redox potential of Fc/Fc<sup>+</sup> vs Ag/AgCl. <sup>g</sup>E<sub>LUMO</sub> = E<sub>HOMO</sub> - E<sub>0-0</sub>. <sup>h</sup> $\Delta$ G = E<sub>ox</sub> - E<sub>red</sub> - e<sup>2</sup>/dε, E<sub>ox</sub> is the oxidation potential of BOPHY-PTZ and E<sub>red</sub> is the reduction potential of Cu<sup>2+</sup> in acetonitrile or water, d is the center to center distance of the donor and acceptor and  $\epsilon$  is the dielectric constant of the solvent. In acetonitrile or water, the coulombic term can be neglected.



Figure S8. Fluorescence emission spectra of 1  $\mu$ M BOPHY-PTZ in the absence or presence of 10  $\mu$ M Cu<sup>2+</sup> in different solvents.



**Figure S9.** Fluorescence emission intensity changes of 1  $\mu$ M BOPHY-PTZ at 574 nm in the presence of 10  $\mu$ M Cu<sup>2+</sup> ions in different pH buffer-CH<sub>3</sub>CN (CH<sub>3</sub>CN: 99.75%) solvent mixtures.



**Figure S10.** Fluorescence emission intensity changes of 1  $\mu$ M BOPHY-PTZ at 574 nm in the absence or presence of 10  $\mu$ M Cu<sup>2+</sup> in different CH<sub>3</sub>CN-H<sub>2</sub>O solvent mixtures [CH<sub>3</sub>CN (v/v %): 99.75, 89.75, 79.75, 49.75 and 19.75%].



**Figure S11.** Temperature-dependent fluorescence emission intensity changes of BOPHY-PTZ (1  $\mu$ M) at 574 nm in CH<sub>3</sub>CN-H<sub>2</sub>O solvent mixtures (CH<sub>3</sub>CN: 99.75%) in the presence or absence of Cu<sup>2+</sup> (10  $\mu$ M).



**Figure S12.** Time-dependent fluorescence emission intensity changes of BOPHY-PTZ (1  $\mu$ M) at 574 nm in CH<sub>3</sub>CN-H<sub>2</sub>O solvent mixture (CH<sub>3</sub>CN: 99.75%) and in the presence of different concentrations of Cu<sup>2+</sup> at 20 °C.



**Figure S13**. (a) Fluorescence spectra of **BOPHY-PTZ** (1  $\mu$ M) upon the addition of oxidants and Cu<sup>+</sup>. (b) Fluorescence emission intensity changes of **BOPHY-PTZ** (1  $\mu$ M) at 574 nm in the presence of Cu<sup>2+</sup> (2  $\mu$ M) and other anions (20  $\mu$ M each). (1) Cu<sup>2+</sup>, (2) O<sub>2<sup>-</sup></sub>, (3) MnO<sub>4<sup>-</sup></sub>, (4) Cr<sub>2</sub>O<sub>7<sup>-</sup></sub>, (5) NO<sub>2<sup>-</sup></sub>, (6) NO, (7) ClO<sup>-</sup>, (8) Cu<sup>+</sup>.