Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Supporting Information

Modelling the surface of amorphous dehydroxylated silica: the influence of the potential on the

nature and density of defects.

Stéphanie Halbert,^{a†} Simona Ispas,^b* Christophe Raynaud,^a* and Odile Eisenstein.^a

^a Institut Charles Gerhardt (ICGM), Univ. Montpellier, CNRS, ENSCM, Montpellier, France. E-mail: Christophe.Raynaud1@umontpellier.fr

^{b.} Laboratoire Charles Coulomb (L2C), Univ. Montpellier, CNRS, Montpellier, France. E-mail: Simona.Ispas@umontpellier.fr

† Present address: Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Chimie Théorique CC 137, 4, place Jussieu F. 75252 Paris Cedex 05, France.

Table of Contents

Figure S1: Density profiles ρ_{c} (t = Si and O), ρ_{s} and ρ_{o} (black: BKS, red: CHIK) for the liquid film at 2500 K.

Figure S2: Angle distribution functions P_{osso} (black: BKS, red: CHIK) for the liquid film. The solid and dashed lines are for 3400 and 2500 K, respectively.

Figure S3: Density profiles ρ_{t} (t = Si and O), ρ_{s} and ρ_{o} (black: BKS, red: CHIK) for the glass film at 300 K.

Figure S4: Angle distribution functions P_{oso} (black: BKS, red: CHIK) for the glass film. The solid and dashed lines are for 1000 and 300 K, respectively.

Figure S5: Density profiles ρ_{c} (t = Si and O), ρ_{s} and ρ_{o} (black: large, red: small models) for the liquid film at 3400 K with CHIK.

Figure S6: Radial distribution functions $g_{i}(r)$ PDF (black: large, red: small models) for the liquid film at 3400 K with CHIK.

Figure S7: Angle distribution functions P_{sosi} (black: large, red: small models) for the liquid film at 3400 K with CHIK.

Figure S8: Angle distribution functions P_{oso} (black: large, red: small models) for the liquid film at 3400 K with CHIK.

Figure S9: Distributions P(n) (black: large, red: small models) of (SiO), type rings, nM, for the surface and interior of the liquid film at 3400 K with CHIK.

Figure S10: Density profiles ρ_{c} (t = Si and O), ρ_{s} and ρ_{o} (black: quenching rate of 10^{10} K/s, red: 10^{12} K/s) for the glass film at 1000 K with CHIK.

Figure S11: Radial distribution functions $g_{\mu}(r)$ PDF (black: quenching rate of 10^{10} K/s, red: 10^{10} K/s) for the glass film at 1000 K with CHIK.

Figure S12: Angle distribution functions P_{oso} (black: quenching rate of 10^{13} K/s, red: 10^{12} K/s) for the glass film at 1000 K with CHIK.

Figure S13: Angle distribution functions P_{sross} (black: quenching rate of 10^{13} K/s, red: 10^{12} K/s) for the glass film at 1000 K with CHIK.

Figure S14: Distributions P(n) (black: quenching rate of 10^{10} K/s, red: 10^{10} K/s) of (SiO), type rings, nM, for the surface and interior of the glass film at 1000 K with CHIK.

Figure S15: Distributions of (SiO), ring lengths, nM, around the 2M rings for the interior and the surface of the glass film (black: BKS, red: CHIK) at 300 K.

Table S16: Percentages of the Si and O Coordination Numbers (CN) located in a sphere of radius 4 Å from 2M rings.

Figure S1: Density profiles ρ_t (t = Si and O), ρ_{s_i} and ρ_o (black: BKS, red: CHIK) for the liquid film at 2500 K.

Figure S2: Angle distribution functions P_{oso} (black: BKS, red: CHIK) for the liquid film. The solid and dashed lines are for 3400 and 2500 K, respectively.

Figure S3: Density profiles ρ_t (t = Si and O), ρ_{si} and ρ_o (black: BKS, red: CHIK) for the glass film at 300 K.

Figure S4: Angle distribution functions P_{osto} (black: BKS, red: CHIK) for the glass film. The solid and dashed lines are for 1000 and 300 K, respectively.

Figure S5: Density profiles ρ_t (t = Si and O), ρ_{si} and ρ_o (black: large, red: small models) for the liquid film at 3400 K with CHIK.

Figure S6: Radial distribution functions $g_{ij}(r)$ PDF (black: large, red: small models) for the liquid film at 3400 K with CHIK.

Figure S7: Angle distribution functions P_{siosi} (black: large, red: small models) for the liquid film at 3400 K with CHIK.

Figure S8: Angle distribution functions P_{oso} (black: large, red: small models) for the liquid film at 3400 K with CHIK.

Figure S9: Distributions P(n) (black: large, red: small models) of (SiO)_a type rings, nM, for the surface and interior of the liquid film at 3400 K with CHIK.

Figure S10: Density profiles ρ_t (t = Si and O), ρ_{s_i} and ρ_o (black: quenching rate of 10¹³ K/s, red: 10¹² K/s) for the glass film at 1000 K with CHIK.

Figure S11: Radial distribution functions $g_{ij}(r)$ PDF (black: quenching rate of 10^{13} K/s, red: 10^{12} K/s) for the glass film at 1000 K with CHIK.

Figure S12: Angle distribution functions P_{osio} (black: quenching rate of 10^{13} K/s, red: 10^{12} K/s) for the glass film at 1000 K with CHIK.

Figure S13: Angle distribution functions P_{sost} (black: quenching rate of 10^{13} K/s, red: 10^{12} K/s) for the glass film at 1000 K with CHIK.

Figure S14: Distributions P(n) (black: quenching rate of 10^{13} K/s, red: 10^{12} K/s) of (SiO)₅ type rings, nM, for the surface and interior of the glass film at 1000 K with CHIK.

Figure S15: Distributions of (SiO)_a ring lengths, nM, around the 2M rings for the interior and the surface of the glass film (black: BKS, red: CHIK) at 300 K.

	Т(К)	1000	300	1000	300
Interior	CN _{Si} (3)	0.1	0	2	0.9
	CN _{Si} (4)	97.8	98.2	97.9	99.1
	CN _{si} (5)	2.1	1.8	0	0
	CN ₀ (1)	0.9	1.5	2.5	2.1
	CN ₀ (2)	98.9	98.5	97	97.4
	CN ₀ (3)	0.2	0	0.4	0.5
Surface	CN _{si} (3)	1.2	1.0	2.9	3.5
	CN _{Si} (4)	98.2	98.5	97	96.5
	CN _{si} (5)	0.6	0.5	0.1	0
	CN ₀ (1)	2	1.9	5.7	6.4
	CN ₀ (2)	96.6	96.5	91.7	90.9
	CN ₀ (3)	1.4	1.6	2.7	2.7

Table S16: Percentages of the Si and O Coordination Numbers (CN) located in a sphere of radius 4 Å from 2M rings.