Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Directional growth, physicochemical and quantum chemical investigations on Pyridinium 2-carboxylate: 4-nitrophenol (P2C4N) single crystal for nonlinear optical (NLO) applications

V. Sivasubramani^a, Jesby George^b, M. Senthil Pandian^a, P. Ramasamy^a, P. Pounraj^a,

K. K. Maurya^c, D. Sajan^b ^aSSN Research Centre, SSN College of Engineering, Kalavakkam-603 110, Chennai, Tamilnadu, India ^bCentre for Advanced Functional Materials, Department of Physics, Bishop Moore College, Mavelikara, Alappuzha, Kerala 690 110, India

^c X-ray Analysis and Crystal Growth Section, CSIR- National Physical Laboratory, New Delhi-110 012, India

SUPPLEMENTARY INFORMATION

1. Determination of linear optical parameters

The absorption coefficient of the grown crystal was evaluated using optical transmission data by the following equation

$$\alpha = \frac{2.303 \times \log\left(\frac{1}{T}\right)}{t} - \dots - (1)$$

where 'T' is the percentage of transmittance and 't' is the thickness of the sample (1 mm) which was used in UV-Vis-NIR transmittance analysis. Optical band gap (E_g) was evaluated using Tauc's plot relation by the following equation [1]

$$\alpha h \upsilon = A(h \upsilon - E_{\sigma})^n - \dots - (2)$$

where ' E_g 'denotes the band gap of the sample, 'A' is a constant, 'h' is Planck's constant, 'v' is the frequency of the incident photon and 'n' is the characteristics of an electronic transition of the given material. In the above relation, if n=1/2 for direct allowed transitions, n=3/2 for direct forbidden transitions, n=2 for indirect allowed transitions and n=3 for indirect forbidden transitions [2].

The reflectance (R) in terms of absorption coefficient can be calculated by the following equation

$$R = \frac{\exp(-\alpha t) \pm \sqrt{\exp(-\alpha t)T - \exp(-3\alpha t)T + \exp(-2\alpha t)T^{2}}}{\exp(-\alpha t) + \exp(-2\alpha t)T} - \dots - \dots - (2)$$

The refractive index (n_0) of the grown crystal was determined by the following equation [3]

$$n_0 = -(R+1) \pm 2\frac{\sqrt{R}}{(R-1)} - \dots - \dots - \dots - \dots - (3)$$

The extinction coefficient of the title crystal was determined by the following equation

$$K = \frac{\lambda \alpha}{4\pi} - \dots - (4)$$

2. Determination of third-order nonlinear optical (NLO) parameters

The Rayleigh diffraction length (Z_R) of laser beam was calculated by the following equation [4]

where, 'K' denotes the wavevector (K= $2\pi/\lambda$) and ' ω_0 ' is the beam waist at the focal point. The beam waist (ω_0) of the laser source can be calculated by the following equation [4]

where, 'f' denotes the focal length of the lens, ' λ ' is the wavelength of the source and 'D' is the beam radius at the lens. In order to determine the nonlinear refractive index (n₂), the difference between normalized peak and valley transmittance (Δ Tp–v) from the closed aperture (Fig.13b) can be calculated in terms of axis phase shift ($|\Delta \phi|$) at the focus by the following equation [5]

$$\left|\Delta\phi\right| = \frac{\Delta T_{P-V}}{0.406 \left(1-S\right)^{0.25}} - \dots - (7)$$

where, 'S' is the linear transmittance of the aperture and it is calculated using the following relation

$$S = 1 - \exp\left(\frac{-2r_a^2}{\omega_a^2}\right) - \dots - \dots - \dots - \dots - \dots - \dots - (8)$$

where ' r_a ' denotes the radius of the aperture and ' w_a ' denotes the beam radius at the aperture. The third-order nonlinear refractive index (n₂) of the grown crystal was determined by the following relation

$$n_2 = \frac{\Delta \Phi_0}{K I_0 L_{eff}} - \dots - \dots - \dots - \dots - \dots - \dots - (9)$$

where, $K = \frac{2\pi}{\lambda}$, ' L_{eff} ' is the effective thickness of the sample and 'I₀' is the intensity of the laser beam at the focal point. The effective thickness ' L_{eff} ' can be calculated by the following relation

where ' α ' is the linear absorption coefficient and it was obtained by UV-Vis-NIR transmittance analysis and 'L' denotes the thickness of the crystal which is used for the UV-Vis-NIR analysis. From OP curve (Fig. 13a), the nonlinear refractive index of absorption coefficient (β) can be calculated using the following relation [4]

$$\beta = \frac{2\sqrt{2} \Delta T}{I_0 L_{eff}} - \dots - \dots - \dots - \dots - \dots - \dots - (11)$$

where ' Δ T' is normalized peak transmittance in the open aperture curve (Z=0). Based on the results, the real and imaginary parts of the third-order nonlinear optical susceptibility can be calculated by the following relations [6]

Re
$$\chi^{(3)}$$
 (esu) = $\frac{10^{-4} (\varepsilon_0 C^2 n_0^2 n_2)}{\pi} \left(\frac{cm^2}{W}\right) - - - - - - - (12)$

Im
$$\chi^{(3)}(\text{esu}) = \frac{10^{-2} (\varepsilon_0 C^2 n_0 \lambda \beta)}{4\pi^2} \left(\frac{cm}{W}\right) - - - - - - - - (13)$$

where, ' ε_0 ' denotes the vacuum permittivity (8.851×10⁻¹² F/m), 'C' denotes the velocity of light in vacuum (3×10⁸ m/s) and ' n_0 ' denotes the linear refractive index of P2C4N crystal. The n_0 was calculated from UV-Vis-NIR analysis at 632 nm and it was found to be 1.35. The absolute third-order nonlinear susceptibility of the title crystal can be calculated by the following relation.

$$\left|\chi^{(3)}\right| = \left[\left(\operatorname{Re}(\chi^{(3)})\right)^2 + \left(\operatorname{Im}(\chi^{(3)})\right)^2\right]^{1/2} \operatorname{esu} - - - - - - - (14)$$

Further, the second-order hyperpolarizability (γ) of the title crystal was estimated by the following equation [6]

where, 'N' is the number of molecules per unit volume and it can be obtained by the following equation

where ' (ρ^*) ' denotes the density of P2C4N crystal, 'N_A' denotes the Avogadro number and 'M' denotes the molecular weight. The local field correction factor (f) can be obtained from the following equation

where, ' n_o ' denotes the linear refractive index of the grown crystal and it was calculated by the UV-Vis-NIR analysis. The coupling factor can be determined by the ratio of the imaginary and real part of the third-order susceptibility of the grown crystal [7]

In order to know the suitability of the grown crystal for optical switching applications, two figure of merit were evaluated using the following equations [8]

where, 'n₂' is nonlinear refractive index, 'I₀' is the intensity of the laser beam (I₀=26.31 MW/m²), ' α ' is linear absorption coefficient, ' λ ' is wavelength of laser source and ' β ' is nonlinear absorption coefficient.

References

1. J. Dalal, N. Sinha, H. Yadav and B. Kumar, RSC Adv., 2015, 5, 57735-57748.

2. N. Sudharsana, V. Krishnakumar and R. Nagalakshmi, *Journal of Crystal Growth*, 2014, 398, 45-57.

3. G. Anandha Babu and P. Ramasamy, *Materials Chemistry and Physics*, 2009, 113, 727-733.

4. K. Senthil, S. Kalainathan, A. Kumar and P. Aravindan, RSC Adv., 2014, 4, 56112-56127.

5. C. Vesta, R. Uthrakumar, G. Vinitha, A. Ramalingam and S. Jerome Das, *Journal of Crystal Growth*, 2009, 311, 4016-4021.

6. K. Senthil, S. Kalainathan, Y. Kondo, F. Hamada and M. Yamada, *Optics & Laser Technology*, 2017, 90, 242-251.

7. K. Naseema, M. Shyma, K. Manjunatha, A. Muralidharan, G. Umesh and V. Rao, *Optics & Laser Technology*, 2011, 43, 1286-1291.

8. H. Mohammed Shanshool, M. Yahaya, W. Mat Yunus and I. Abdullah, *Jurnal Teknologi*, 2016, 78.

Fig.S1. Z-scan experimental setup

S. No	Temperature at top portion (°C)	Temperature at bottom portion (°C)	Growth observations (Solvent-Methanol)	Growth rate
1	37	34	Multi-nucleation was formed at top of the glass ampoule	Crystal growth is not possible
2	36	34	Poor quality crystal	Growth rate is above ~3 mm/day
3	35	35	(Multi nucleation was effectively controlled) Good quality crystals	Optimized growth rate is ~3 mm/day (Growth period is 60 days)

Table.S1. Growth observation of unidirectional SR method grown P2C4N crystal

Bond	XRD	B3LYP/	Bond	XRD	B3LYP/	Dihedral angle	XRD	B3LYP/
length(Å)		cc-	angle (°)		cc-pVTZ	(°)		cc-pVTZ
		pVTZ						
C ₁ -C ₈	1.3673	1.3838	$C_8 - C_1 - C_{10}$	124.8498	128.3031	C ₁₀ -C ₁ -C ₈ -C ₆	179.957	-180.01
C ₁ -C ₁₀	1.5155	1.5441	$C_8 - C_1 - N_{11}$	118.3769	118.9879	C ₁₀ -C ₁ -C ₈ -H ₉	-0.0295	-0.0092
C ₁ -N ₁₁	1.3350	1.3388	$C_{10}-C_1-N_{11}$	116.7710	112.709	N_{11} - C_1 - C_8 - C_6	0.5140	-0.0028
C ₂ -H ₃	0.9299	1.0792	$H_3-C_2-C_4$	120.1254	123.962	N_{11} - C_1 - C_8 - H_9	-179.472	179.9975
C ₂ -C ₄	1.3625	1.3778	$H_3-C_2-N_{11}$	120.0949	117.3405	C ₈ -C ₁ -C ₁₀ -O ₁₂	178.590	180.0131
C ₂ -N ₁₁	1.3350	1.3401	$C_4 - C_2 - N_{11}$	119.7796	118.6975	$C_8 - C_1 - C_{10} - O_{13}$	-2.9456	0.015
C ₄ -H ₅	0.9295	1.0792	$C_2 - C_4 - H_5$	120.4433	119.6798	N_{11} - C_1 - C_{10} - O_{12}	-1.9580	0.0068
C ₄ -C ₆	1.3635	1.397	$C_2 - C_4 - C_6$	119.0821	119.0252	N_{11} - C_1 - C_{10} - O_{13}	176.505	180.0086
C ₆ -H ₇	0.9302	1.0816	$H_{5}-C_{4}-C_{6}$	120.4744	121.295	$C_8 - C_1 - N_{11} - C_2$	-0.5953	0.0015
C ₆ -C ₈	1.3800	1.3877	$C_4 - C_6 - H_7$	120.0556	119.5774	$C_8-C_1-N_{11}-H_{14}$	-0.5953	-180.003
C ₈ -H ₉	0.9305	1.0795	$C_4 - C_6 - C_8$	119.8945	120.3121	C_{10} - C_1 - N_{11} - C_2	179.916	180.0072
C ₁₀ -O ₁₂	1.2329	1.2441	$H_7 - C_6 - C_8$	120.0497	120.1105	C_{10} - C_1 - N_{11} - H_{14}	3.4454	0.0031
C ₁₀ -O ₁₃	1.2352	1.2404	$C_1 - C_8 - C_6$	119.8384	118.7051	$H_3-C_2-C_4-H_5$	0.7226	-0.0021
N ₁₁ -H ₁₄	0.8669	1.0352	$C_1 - C_8 - H_9$	120.0951	118.2175	$H_3-C_2-C_4-C_6$	-179.298	-180.003
O ₁₃ -H ₂₉	1.7732	1.7189	$C_{6}-C_{8}-H_{9}$	120.0664	123.0774	$N_{11}-C_2-C_4-H_5$	-179.267	-180.001
C ₁₅ -C ₁₆	1.3934	1.4041	$C_1 - C_{10} - O_{12}$	116.6164	112.2723	N ₁₁ -C ₂ -C ₄ -C ₆	0.7108	-0.0018

C ₁₅ -C ₂₃	1.3904	1.4043	C ₁ -C ₁₀ -O ₁₃	115.8770	114.7467	$H_3-C_2-N_{11}-C_1$	179.989	180.0017
C ₁₅ -O ₂₆	1.3362	1.3369	O ₁₂ -C ₁₀ -O ₁₃	127.4855	132.981	$H_3-C_2-N_{11}-H_{14}$	-3.5025	0.0064
C ₁₆ -H ₁₇	0.9299	1.0808	$C_1 - N_{11} - C_2$	123.0216	124.2722	$C_4-C_2-N_{11}-C_1$	-0.0203	0.0009
C ₁₆ -C ₁₈	1.3678	1.379	$C_1 - N_{11} - H_{14}$	119.0020	109.6662	C_4 - C_2 - N_{11} - H_{14}	176.487	180.0056
C ₁₈ -H ₁₉	0.9299	1.0788	$C_2 - N_{11} - H_{14}$	117.8861	126.0616	C ₂ -C ₄ -C ₆ -H ₇	179.2051	179.9987
C ₁₈ -C ₂₀	1.3794	1.3929	$C_{10}-O_{13}-H_{29}$	117.8950	127.3267	$C_2 - C_4 - C_6 - C_8$	-0.7725	0.0004
C ₂₀ -C ₂₁	1.3812	1.3915	C_{16} - C_{15} - C_{23}	119.2379	119.4638	$H_{5}-C_{4}-C_{6}-H_{7}$	-0.8163	-0.0019
C ₂₀ -N ₂₅	1.4482	1.4568	C_{16} - C_{15} - O_{26}	117.5051	117.4851	$H_5-C_4-C_6-C_8$	179.206	179.9998
C ₂₁ -H ₂₂	0.9298	1.0789	C_{23} - C_{15} - O_{26}	123.2501	123.0511	$C_4 - C_6 - C_8 - C_1$	0.1616	0.0019
C ₂₁ -C ₂₃	1.3705	1.3817	C_{15} - C_{16} - H_{17}	119.7136	118.5331	C ₄ -C ₆ -C ₈ -H ₉	-179.851	-179.998
C ₂₃ -H ₂₄	0.9295	1.0818	C_{15} - C_{16} - C_{18}	120.5756	120.4723	$H_7-C_6-C_8-C_1$	-179.815	180.0036
N ₂₅ -O ₂₇	1.2223	1.2275	H_{17} - C_{16} - C_{18}	119.7106	120.9946	H ₇ -C ₆ -C ₈ -H ₉	0.1707	0.0033
N ₂₅ -O ₂₈	1.2250	1.2276	C_{16} - C_{18} - H_{19}	120.3380	121.3076	C ₁ -C ₁₀ -O ₁₃ -H ₂₉	171.736	180.0116
O ₂₆ -H ₂₉	0.8384	0.9881	C_{16} - C_{18} - C_{20}	119.2414	119.399	O ₁₂ -C ₁₀ -O ₁₃ -H ₂₉	-9.9948	0.0139
			H_{19} - C_{18} - C_{20}	120.4205	119.2934	C ₁₀ -O ₁₃ -O ₂₆ -C ₁₅	65.2125	0.0093
			C_{18} - C_{20} - C_{21}	121.1985	120.8909	C_{23} - C_{15} - C_{16} - H_{17}	-178.446	-180.004
			C_{18} - C_{20} - N_{25}	119.6131	119.5235	C ₂₃ -C ₁₅ -C ₁₆ -C ₁₈	1.6343	-0.0049
			C_{21} - C_{20} - N_{25}	119.1859	119.5856	O_{26} - C_{15} - C_{16} - H_{17}	2.4709	-0.003
			C_{20} - C_{21} - H_{22}	120.2803	119.2221	O_{26} - C_{15} - C_{16} - C_{18}	-177.448	179.9961
			C_{20} - C_{21} - C_{23}	119.4079	119.8506	C_{16} - C_{15} - C_{23} - C_{21}	-2.1391	0.0038
			H_{22} - C_{21} - C_{23}	120.3117	120.9273	C ₁₆ -C ₁₅ -C ₂₃ -H ₂₄	177.878	179.9999
			C ₁₅ -C ₂₃ -C ₂₁	120.3083	119.9235	O ₂₆ -C ₁₅ -C ₂₃ -C ₂₁	176.888	-179.997
			C_{15} - C_{23} - H_{24}	119.8527	119.7967	O_{26} - C_{15} - C_{23} - H_{24}	-3.0941	-0.0011
			C_{21} - C_{23} - H_{24}	119.8389	120.2798	C_{16} - C_{15} - O_{26} - H_{29}	172.6174	179.9557
			C ₂₀ -N ₂₅ -O ₂₇	118.1174	118.1174	C_{23} - C_{15} - O_{26} - H_{29}	-6.4256	-0.0432
			C ₂₀ -N ₂₅ -O ₂₈	118.6440	118.1429	C ₁₅ -C ₁₆ -C ₁₈ -H ₁₉	179.445	-179.997
			O ₂₇ -N ₂₅ -O ₂₈	122.8478	123.7397	C_{15} - C_{16} - C_{18} - C_{20}	-0.5329	0.0021
			C ₁₅ -O ₂₆ - H ₂₉	109.4443	112.909	H_{17} - C_{16} - C_{18} - H_{19}	-0.4743	0.0018
						$H_{17}-C_{16}-C_{18}-C_{20}$	179.547	-179.999
						C_{16} - C_{18} - C_{20} - C_{21}	-0.0857	0.0017
						C_{16} - C_{18} - C_{20} - N_{25}	179.3357	180.0013
						H_{19} - C_{18} - C_{20} - C_{21}	179.936	180.0011
						H_{19} - C_{18} - C_{20} - N_{25}	-0.6424	0.0007
						C ₁₈ -C ₂₀ -C ₂₁ -H ₂₂	179.590	-180
						C ₁₈ -C ₂₀ -C ₂₁ -C ₂₃	-0.4180	-0.0028
						N_{25} - C_{20} - C_{21} - H_{22}	0.1665	0.001
						N_{25} - C_{20} - C_{21} - C_{23}	-179.841	179.9977
						C_{18} - C_{20} - N_{25} - O_{27}	-1.3651	0.0238
						C_{18} - C_{20} - N_{25} - O_{28}	178.095	-179.975

			C_{21} - C_{20} - N_{25} - O_{27}	178.068	-179.977
			C_{21} - C_{20} - N_{25} - O_{28}	-2.4711	0.0248
			C_{20} - C_{21} - C_{23} - C_{15}	1.5379	-0.0001
			C_{20} - C_{21} - C_{23} - H_{24}	-178.479	-179.996
			H_{22} - C_{21} - C_{23} - C_{15}	-178.470	-180.003
			H_{22} - C_{21} - C_{23} - H_{24}	1.5117	0.0005
		1			

Table.S2. The comparison of bond lengths, bond angles, dihedral angle for P2C4N by

the single crystal XRD and DFT method

Donor(j)	Acceptor		E ⁽²⁾	E(j)-E(j)	F(i,j)
			(kcal/mol		
)		
σ (C ₁ - C ₈)	$\sigma * (C_1 - C_{10})$	1.96906	0.96	1.09	0.03
σ (C ₁ - C ₈)	σ *(C ₁ - N ₁₁)		0.79	1.2	0.028
σ (C ₁ - C ₈)	σ *(C ₆ - H ₇)		2.7	1.14	0.05
σ (C ₁ - C ₈)	σ *(C ₆ - C ₈)		1.59	1.26	0.04
σ (C ₁ - C ₈)	σ *(C ₈ - H ₉)		0.88	1.16	0.029
σ (C ₁ - C ₈)	σ *(N ₁₁ - H ₁₄)		2.54	1.1	0.048
σ (C ₁ - C ₁₀)	σ *(C ₁ - C ₈)		1.18	1.12	0.033
σ (C ₁ - C ₁₀)	σ *(C ₁ - C ₁₀)	1.96906	0.82	0.95	0.026
σ (C ₁ - C ₁₀)	σ *(C ₂ - N ₁₁)		6.39	1.04	0.073
σ (C1 - C10)	σ *(C6 - C8)		2.9	1.12	0.051
σ (C1 - C10)	σ *(N11 - H14)		0.98	0.96	0.028
σ (C1 - N11)	σ *(C1 - C8)		1.21	1.4	0.037
σ (C1 - N11)	σ *(C2 - H3)		1.71	1.25	0.041
σ (C1 - N11)	σ *(C2 - N11)		1.58	1.32	0.041
σ (C1 - N11)	σ *(C8 - H9)		1.68	1.3	0.042
σ (C1 - N11)	σ *(C10 - O13)		0.75	1.49	0.03
σ (C1 - N11)	σ *(N11 - H14)		0.7	1.24	0.026
σ (C1 - N11)	π *(C1 - N11)		0.52	0.33	0.013
σ (C1 - N11)	π *(C2 - C4)		22.94	0.36	0.083
σ (C1 - N11)	π *(C10 - O13)		5.36	0.42	0.045
σ (C2 - H3)	σ *(C1 - N11)		6.21	1.03	0.072
σ (C2 - H3)	σ *(C 2 - C4)		0.64	1.08	0.023
σ (C2 - H3)	σ *(C4 - C6)		3.7	1.07	0.056
σ (C2 - H3)	σ *(N11 - H14)		0.51	0.93	0.02
σ (C2 - C4)	σ *(C2 - H3)		0.96	1.13	0.029
σ (C2 - C4)	σ *(C2 - N11)		0.87	1.2	0.029
σ(C2 - C4)	σ *(C4 - H5)		0.72	1.16	0.026
σ (C2 - C4)	σ *(C4 - C6)		1.45	1.25	0.038

σ (C2 - C4)	σ *(C6 - H7)	2.43	1.16	0.048
σ (C2 - C4)	σ *(N11 - H14)	3.35	1.12	0.055
π (C2 - C4)	π *(C1 - N11)	13.45	0.25	0.054
π (C2 - C4)	π *(C2 - C4)	0.97	0.29	0.015
σ (C2 - N11)	σ *(C1 - C10)	1.6	1.25	0.041
σ (C2 - N11)	σ *(C1 - N11)	1.84	1.35	0.045
σ (C2 - N11)	σ *(C 2 - C4)	1.1	1.4	0.035
σ (C2 - N11)	σ *(C4 - H5)	1.62	1.3	0.041
σ (C2 - N11)	σ *(N11 - H14)	0.57	1.26	0.024
σ (C4 - H5)	σ *(C2 - N11)	4.83	0.99	0.062
σ (C4 - H5)	σ *(C6 - C8)	4.13	1.07	0.059
σ (C4 - C6)	σ *(C2 - H3)	2.81	1.11	0.05
σ (C4 - C6)	σ *(C2 - C4)	1.45	1.24	0.038
σ (C4 - C6)	σ *(C4 - H5)	0.89	1.14	0.028
σ (C4 - C6)	σ *(C 6 - H 7)	0.59	1.14	0.023
σ (C4 - C6)	σ *(C6 - C8)	1.45	1.26	0.038
σ (C4 - C6)	σ *(C8 - H9)	2.65	1.16	0.05
σ (C6 - H7)	σ *(C1 - C8)	4.46	1.07	0.062
σ (C6 - H7)	σ *(C2 - C4)	4.43	1.05	0.061
σ (C6 - H7)	σ *(C4 - H5)	0.52	0.95	0.02
σ (C6 - C8)	σ *(C1 - C8)	1.56	1.26	0.04
σ (C6 - C8)	σ *(C1 - C10)	3.56	1.09	0.057
σ (C6 - C8)	σ *(C4 - H5)	2.58	1.14	0.048
σ (C6 - C8)	σ *(C4 - C6)	1.45	1.23	0.038
σ (C6 - C8)	σ *(C6 - H7)	0.69	1.14	0.025
σ (C6 - C8)	σ *(C8 - H9)	0.93	1.16	0.029
σ (C8 - H9)	σ *(C1 - C8)	0.7	1.05	0.024
σ (C8 - H9)	σ *(C1 - N11)	6	0.99	0.069
σ (C8 - H9)	σ *(C4 - C6)	4.37	1.03	0.06
σ (C8 - H9)	σ *(C6 - H7)	0.54	0.93	0.02
σ (C10 - O12)	σ *(C1 - C8)	1.68	1.49	0.045
σ (C10 - O12)	σ *(C 10 - O13)	1.96	1.58	0.05
σ (C10 - O13)	σ *(C1 - N11)	1.12	1.43	0.036
σ (C10 - O13)	σ *(C10 - O12)	2.14	1.57	0.052
σ (C10 - O13)	π *(C1 - N11	6.39	0.27	0.042
σ (C10 - O13)	π *(C10 - O13	1.74	0.36	0.025
σ (N11 - H14)	σ *(C1 - C8)	4.92	1.2	0.069
σ (N11 - H14)	σ *(C1 - C10)	0.55	1.03	0.022
σN 11-H 14	σ *(C1 - N11)	0.73	1.14	0.026
σN 11-Η 14	σ *(C2 - H3)	0.88	1.05	0.027
σN 11-Η 14	σ *(C2 - C4)	3.05	1.19	0.054
n ₁ C 8	π *(C1 - N11)	160.26	0.09	0.126
n ₁ C 8	π *(C10 - O13)	0.56	0.17	0.011
n ₁ O 12	σ *(C1 - C10)	2.79	1.03	0.049

n ₁ O 12	σ *(C10 - O13)	2.67	1.29	0.053
n ₁ O 12	σ *(N11 - H14)	1.24	1.04	0.032
LP (2) O 12	σ *(C1 - C8)	0.95	0.74	0.025
LP (2) O 12	σ *(C1 - C10)	21.77	0.58	0.1
LP (2) O 12	σ *(C2 - N11)	0.8	0.66	0.021
LP (2) O 12	σ *(C10 - O13)	19.78	0.83	0.118
LP (2) O 12	σ *(N11 - H14)	6.26	0.58	0.055
LP (3) O 12	π *(C10 - O13)	120.36	0.25	0.154
n ₁ O 13	σ *(C1 - C10	0.55	1.01	0.022
n ₁ O 13	σ *(C10 - O12)	6.9	1.26	0.084
LP(2)O13	σ *(C1 - C10)	25.28	0.59	0.109
LP(2)O13	σ *(C1 - N11)	1.14	0.7	0.026
LP(2)O13	σ *(C10 - O12)	14.29	0.84	0.1
π *(C1 - N11)	π *(C2 - C4)	69.45	0.03	0.069
π *(C1 - N11)	π *(C10 - O13)	35.4	0.09	0.074
σ(C1 - C10)	σ *(C23 - H24)	0.09	1.11	0.009
σ (C1 - C10)	σ *(O26 - H29)	0.32	1.09	0.017
n ₁ 0 12	σ *(C23 - H24)	0.35	1.19	0.018
LP(2)012	σ *(C23 - H24)	1.1	0.73	0.026
n ₁ 0 13	σ *(C15 - O26)	0.11	1.12	0.01
n ₁ 0 13	σ *(O26 - H29)	6.46	1.14	0.077
LP (2) O 13	σ *(C15 - O26)	0.1	0.7	0.008
LP(2)013	σ *(O26 - H29)	15.25	0.73	0.096
LP (2) O 26	π *(C10 - O13)	0.05	0.28	0.004
σ(C15 - C16)	σ *(C15 - C23)	2.14	1.22	0.046
σ(C15 - C16)	σ *(C16 - H17)	0.68	1.11	0.025
σ(C15 - C16)	σ *(C16 - C18)	1.9	1.25	0.044
σ (C15 - C16	σ *(C18 - H19)	2.71	1.13	0.049
σ (C15 - C16)	σ *(C23 - H24)	2.4	1.14	0.047
σ (C15 - C16)	σ *(O26 - H29)	2.29	1.12	0.045
σ (C15 - C23)	σ *(C15 - C16)	2.32	1.22	0.048
σ (C15 - C23)	σ *(C16 - H17)	2.29	1.12	0.045
σ (C15 - C23)	σ *(C21 - H22)	2.66	1.13	0.049
σ (C15 - C23)	σ *(C21 - C23)	2.03	1.26	0.045
σ (C15 - C23)	σ *(C23 - H24)	0.81	1.14	0.027
σ (C15 - O26)	σ *(C15 - C16	0.6	1.44	0.026
σ (C15 - O26	σ *(C15 - C23)	0.78	1.45	0.03
σ (C15 - O26)	σ *(C16 - C18)	1.57	1.48	0.043
σ (C15 - O26)	σ *(C21 - C23)	1.31	1.48	0.039
σ (C16 - H17)	σ *(C15 - C23)	4.3	1.04	0.06
σ (C16 - H17)	σ *(C15 - O26)	0.75	0.91	0.023
σ (C16 - H17)	σ *(C16 - C18)	0.63	1.08	0.023
σ (C16 - H17)	σ *(C18 - C20)	4.5	1.05	0.061
σ (C16 - C18)	σ *(C15 - C16)	1.46	1.23	0.038

σ (C16 - C18)	σ *(C15 - O26)	3.42	1.11	0.055
σ (C16 - C18)	σ *(C16 - H17)	0.98	1.13	0.03
σ (C16 - C18)	σ *(C18 - H19)	0.92	1.15	0.029
σ (C16 - C18)	σ *(C18 - C20)	2.12	1.24	0.046
σ (C16 - C18)	σ *(C20 - N25)	4.62	1	0.062
σ (C18 - H19)	σ *(C15 - C16)	4.57	1.04	0.061
σ (C18 - H19)	σ *(C16 - H17)	0.52	0.94	0.02
σ (C18 - H19)	σ *(C16 - C18)	0.65	1.08	0.024
σ (C18 - H19)	σ *(C20 - C21)	4.96	1.05	0.065
σ (C18 - H19)	σ *(C20 - N25)	0.66	0.81	0.021
σ (C18 - C20)	σ *(C16 - H17)	2.84	1.13	0.051
σ (C18 - C20)	σ *(C16 - C18)	1.83	1.27	0.043
σ (C18 - C20)	σ *(C18 - H19)	0.9	1.14	0.029
σ (C18 - C20)	σ *(C20 - C21)	3.7	1.24	0.06
σ (C18 - C20)	σ *(C21 - H22)	2.33	1.14	0.046
σ (C18 - C20)	σ *(N25 - O28)	2.46	1.13	0.047
σ (C20 - C21)	σ *(C18 - H19)	2.35	1.14	0.046
σ (C20 - C21)	σ *(C18 - C20)	3.68	1.24	0.06
σ(C20 - C21)	σ *(C21 - H22)	0.89	1.14	0.028
σ (C20 - C21)	σ *(C21 - C23)	1.78	1.27	0.043
σ (C20 - C21)	σ *(C23 - H24)	2.68	1.15	0.05
σ (C20 - C21)	σ *(N25 - O27)	2.44	1.13	0.047
σ (C20 - N25)	σ *(C16 - C18)	1.73	1.35	0.043
σ (C20 - N25)	σ *(C18 - C20)	0.61	1.33	0.025
σ (C20 - N25)	σ *(C20 - C21)	0.63	1.33	0.026
σ (C20 - N25)	σ *(C21 - C23)	1.76	1.35	0.044
σ (C21 - H22)	σ *(C15 - C23)	4.65	1.04	0.062
σ (C21 - H22)	σ *(C18 - C20)	5.02	1.05	0.065
σ (C21 - H22)	σ *(C20 - N25)	0.68	0.81	0.021
σ (C21 - H22)	σ *(C21 - C23	0.64	1.08	0.024
σ (C21 - H22)	σ *(C23 - H24)	0.53	0.96	0.02
σ (C21 - C23)	σ *(C15 - C23)	1.55	1.23	0.039
σ (C21 - C23)	σ *(C15 - O26)	4.18	1.1	0.061
σ (C21 - C23)	σ *(C20 - C21)	2.13	1.24	0.046
σ (C21 - C23)	σ *(C20 - N25)	4.63	1	0.062
σ (C21 - C23)	σ *(C21 - H22)	0.9	1.14	0.029
σ (C21 - C23)	σ *(C23 - H24)	1.08	1.15	0.032
σ (C23 - H24)	σ *(C15 - C16)	4.17	1.03	0.059
σ (C23 - H24)	σ *(C15 - O26)	0.63	0.91	0.021
σ (C23 - H24)	σ *(C20 - C21)	4.3	1.05	0.06
σ (C23 - H24)	σ *(C21 - H22)	0.51	0.95	0.02
σ (C23 - H24)	σ *(C21 - C23)	0.78	1.07	0.026
σ (N25 - O27)	σ *(C20 - C21)	1.14	1.6	0.038
σ (N25 - O27)	σ *(C20 - N25)	0.56	1.35	0.025

σ (N25 - O27)	π *(N25 - O27)		7.82	0.32	0.054
σ (N25 - O28)	σ *(C18 - C20)	C20)		1.59	0.038
σ (N25 - O28)	σ *(C20 - N25)		0.56	1.35	0.025
σ (O26 - H29)	σ *(C15 - C16)		5.33	1.26	0.073
n ₁ C 20	π *(C16 - C18)		64.74	0.16	0.108
n ₁ C 20	π *(C21 - C23)		65.27	0.16	0.108
n ₁ C 20	π *(N25 - O27)		757.14	0.01	0.09
n ₁ O 26	σ *(C15 - C16)		0.63	1.08	0.023
n ₁ O 26	σ *(C15 - C23)		8.85	1.09	0.088
n ₁ O 27	σ *(C20 - N 25)		4.77	1.07	0.065
n ₁ O 27	σ *(N 25 - O28)		2.68	1.21	0.051
LP (2) O 27	σ *(C16 - C18)		0.67	0.84	0.022
LP (2) O 27	σ *(C20 - C21)		0.82	0.81	0.024
LP (2) O 27	σ *(C20 - N25)		14.22	0.57	0.08
LP (2) O 27	σ *(N25 - O28)		19.33	0.7	0.105
n ₁ O 28	σ *(C20 - N25)		4.77	1.07	0.065
n ₁ O 28	σ *(25 - 027)		2.68	1.21	0.051
LP (2) O 28	σ *(C18 - C20)		0.82	0.81	0.024
LP (2) O 28	σ *(C20 - N25)		14.23	0.57	0.081
LP (2) O 28	σ *(C21 - C23)		0.67	0.84	0.022
LP (2) O 28	σ *(N25 - O27)		19.32	0.7	0.105
LP (3) O 28	π *(N25 - O27)		159.61	0.14	0.139

Table.S3. Second-order	perturbation	theory	analysis	of Fock	matrix i	n NBO	basis
	per cur bation	uncory	anary 515	ULLOCK	mati in i		Dasis

RCP	Name	Atom count	ρ	∇²ρ
1	RCP1	6	0.026021	0.167904
2	RCP2	5	0.029197	0.176551
3	RCP3	8	0.004723	0.017498
4	RCP4	6	0.024176	0.148334

Table.S4. Characteristics of the ring CPs of P2C4N

ВСР	Name	Atoms	ρ	∇²ρ	Ellipticity	К
1	BCP1	C ₁₀ - O ₁₂	0.395982	-0.59981	0.110473	0.673827
2	BCP2	C ₁ - N ₁₁	0.333354	-0.76741	0.049919	0.509987
3	BCP3	C ₂ - C ₄	0.333136	-1.13811	0.220928	0.399496
4	BCP4	C ₂ - N ₁₁	0.332658	-0.79888	0.129743	0.50324
5	BCP5	C ₂ - H ₃	0.301899	-1.24958	0.023183	0.346448
6	BCP6	C ₄ - C ₆	0.320136	-1.05694	0.162463	0.365986
7	BCP7	C ₄ - H ₅	0.297706	-1.2081	0.01348	0.340255
8	BCP8	C ₁₀ - O ₁₃	0.398189	-0.5929	0.122627	0.681409
9	BCP9	C ₁ - C ₈	0.330857	-1.12936	0.168437	0.391851
10	BCP10	C ₁ - C ₁₀	0.245602	-0.61602	0.101877	0.212643
11	BCP11	C ₆ - H ₇	0.298513	-1.21813	0.002764	0.340604
12	BCP12	C ₆ - C ₈	0.325906	-1.09151	0.171019	0.379915
13	BCP13	C ₈ - H ₉	0.299457	-1.22968	0.01171	0.342127
14	BCP14	N ₁₁ - H ₁₄	0.326188	-1.94922	0.019127	0.53139
15	BCP15	O ₁₂ - H ₂₄	0.0101	0.035156	0.003142	-0.00163
16	BCP16	O ₁₂ - H ₁₄	0.033106	0.124351	0.365731	-0.00201
17	BCP17	O ₁₃ - H ₂₉	0.043442	0.098612	0.007538	0.008438
18	BCP18	O ₂₆ - H ₂₉	0.338109	-2.50664	0.013705	0.694787
19	BCP19	C ₁₅ - C ₁₆	0.320025	-1.0571	0.207141	0.364347
20	BCP20	C ₁₆ - H ₁₇	0.29373	-1.17047	0.023069	0.33437
21	BCP21	C ₁₆ - C ₁₈	0.3284	-1.09963	0.218135	0.387859
22	BCP22	C ₁₅ - C ₂₃	0.317952	-1.03782	0.20131	0.361363
23	BCP23	C ₁₈ - H ₁₉	0.298217	-1.21177	0.011131	0.34122
24	BCP24	C ₁₈ - C ₂₀	0.3221	-1.062	0.202924	0.37104
25	BCP25	C ₂₃ - H ₂₄	0.295329	-1.18289	0.019802	0.335044

26	BCP26	C ₂₁ - C ₂₃	0.326524	-1.08666	0.210652	0.383588
27	BCP27	C ₂₀ - N ₂₅	0.269117	-0.73517	0.193812	0.327013
28	BCP28	N ₂₅ - O ₂₇	0.503162	-1.11301	0.112268	0.658052
29	BCP29	C ₂₀ - C ₂₁	0.323036	-1.06789	0.204425	0.373344
30	BCP30	N ₂₅ - O ₂₈	0.503045	-1.11222	0.112189	0.657719
31	BCP31	C ₂₁ - H ₂₂	0.298263	-1.21199	0.011194	0.341215
32	BCP32	C ₁₅ - O ₂₆	0.313884	-0.59365	0.019113	0.48432

Table.S5. Characteristics of the bond CPs of P2C4N