Supporting Information

Triplet Energy vs Electron Transfers in Porphyrin- and Tetrabenzoporphyrincarboxylates $/ \mathrm{Pd}_{3}(\mathrm{dppm})_{3}(\mathrm{CO})^{2+}$ Cluster Assemblies; A Question of Negative Charge

Peng Luo, ${ }^{\text {a }}$ Paul-Ludovic Karsenti, ${ }^{a}$ Benoit Marsan ${ }^{\text {b* }}$ and Pierre D. Harvey ${ }^{\text {a* }}$

aDépartement de chimie, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada.
${ }^{\text {b }}$ Département de chimie, Université du Québec à Montréal, Montréal, QC, H2X 2J6, Canada.
Table of Content

Table S1. Phosphorescence lifetimes for TCPP and TCPBP in $1: 1 \mathrm{MeOH}: 2 \mathrm{MeTHF}$ mixture with increasing amount of $\left[\mathbf{P d}_{3}{ }^{\mathbf{2 +}}\right]$ at 77 K .
Figure S1. Top left: variation of phosphorescence spectra of TCPP $\left(1.02 \times 10^{-5} \mathrm{M}\right)$ uponS3 adding $\left[\mathbf{P d}_{3}{ }^{\mathbf{2 +}}\right]$ in $1: 1 \mathrm{MeOH}: 2 \mathrm{MeTHF}$ at 77 K . Curves A-J were obtained with successive addition of $\left[\mathbf{P d}_{3}{ }^{\mathbf{2 +}}\right]$. Each curve represents an increase in $\left[\mathbf{P d}_{3}{ }^{2+}\right]$ concentration by $3.65 \times$ 10^{-6} for TCPP. Top right: relative decrease of intensity with respect to the starting intensity. Middle left: plot of $\left(\Phi_{\mathrm{P}}{ }^{\circ} / \Phi_{\mathrm{P}}\right)$ vs $\left[\mathbf{P d}_{3}{ }^{2+}\right]$ (i.e. Stern-Volmer plot). Middle right: graph of $\log \left[\left(\Phi_{\mathrm{P}}{ }^{\circ}-\Phi_{\mathrm{P}}\right) / \Phi_{\mathrm{P}}\right]$ vs $\log \left[\mathbf{P d}_{3}{ }^{\mathbf{2 +}}\right]$. Bottom left: graph of $\left[1-\left(\Phi_{\mathrm{P}} / \Phi_{\mathrm{P}}{ }^{\circ}\right)\right] /\left[\mathbf{P d}_{\mathbf{3}^{2+}}{ }^{\mathbf{2}}\right]$ vs $\left(\Phi_{\mathrm{P}} / \Phi_{\mathrm{P}}{ }^{\circ}\right)$. Bottom right: graph of $\ln (\mathrm{W}) v s\left[\mathbf{P d}_{3}{ }^{\mathbf{2 +}}\right]$ for $\mathbf{T C P P} \cdots{ }^{\circ}\left[\mathbf{P d}_{3}{ }^{2+}\right]_{\mathbf{x}}$ assembly in $1: 1$ MeOH:2MeTHF at 77 K .
Figure S2. Top left: variation of phosphorescence spectra of TCPEP $\left(5.50 \times 10^{-6} \mathrm{M}\right)$ uponS4 adding $\left[\mathbf{P d}_{3}{ }^{\mathbf{2 +}}\right]$ in $1: 1 \mathrm{MeOH}: 2 \mathrm{MeTHF}$ at 77 K . Curves A-J were obtained with successive addition of $\left[\mathbf{P d}_{3}{ }^{\mathbf{2 +}}\right]$. Each curve represents an increase in $\left[\mathbf{P d}_{3}{ }^{2+}\right]$ concentration by $2.11 \times$ 10^{-6} for TCPEP. Top right: relative decrease of intensity with respect to the starting intensity. Middle left: plot of $\left(\Phi_{\mathrm{P}}{ }^{\circ} / \Phi_{\mathrm{P}}\right)$ vs $\left[\mathbf{P d}_{3}{ }^{2+}\right]$ (i.e. Stern-Volmer plot). Middle right: graph of $\log \left[\left(\Phi_{\mathrm{P}}{ }^{\circ}-\Phi_{\mathrm{P}}\right) / \Phi_{\mathrm{P}}\right]$ vs $\log \left[\mathbf{P d}_{3}{ }^{2+}\right]$. Bottom left: graph of $\left[1-\left(\Phi_{\mathrm{P}} / \Phi_{\mathrm{P}}{ }^{\circ}\right)\right] /\left[\mathbf{P d}_{3}{ }^{2+}\right]$ vs $\left(\Phi_{\mathrm{P}} / \Phi_{\mathrm{P}}{ }^{\circ}\right)$. Bottom right: graph of $\ln (\mathrm{W})$ vs $\left[\mathbf{P d}_{3}{ }^{2+}\right]$ for TCPEP $\cdots \cdot\left[\mathbf{P d}_{3}{ }^{\mathbf{2 +}}\right]_{\mathrm{x}}$ assembly in $1: 1$ MeOH:2MeTHF at 77 K.
Figure S3. Top left: variation of phosphorescence spectra of TCPEBP $\left(7.78 \times 10^{-6} \mathrm{M}\right)$S5 upon adding $\left[\mathbf{P d}_{3}{ }^{\mathbf{2 +}}\right]$ in $1: 1 \mathrm{MeOH}: 2 \mathrm{MeTHF}$ at 77 K . Note that the phosphorescence peaks do not move upon changing the excitation wavelength. Curves A-J were obtained with successive addition of $\left[\mathbf{P d}_{3}{ }^{2+}\right]$. Each curve represents an increase in $\left[\mathbf{P d}_{3}{ }^{2+}\right]$ concentration by 5.67×10^{-5} for TCPEBP. Top right: relative decrease of intensity with respect to the starting intensity. Middle left: plot of $\left(\Phi_{\mathrm{P}}{ }^{\circ} / \Phi_{\mathrm{P}}\right)$ vs $\left[\mathbf{P d}_{3}{ }^{2+}\right]$ (i.e. Stern-Volmer plot). Middle right: graph of $\log \left[\left(\Phi_{\mathrm{P}}{ }^{\circ}-\Phi_{\mathrm{P}}\right) / \Phi_{\mathrm{P}}\right]$ vs $\log \left[\mathbf{P d}_{3}{ }^{\mathbf{2 +}}\right]$. Bottom left: graph of $\left[1-\left(\Phi_{\mathrm{P}} / \Phi_{\mathrm{P}}{ }^{\circ}\right)\right] /\left[\mathbf{P d}_{3}{ }^{\mathbf{2 +}}\right]$ vs $\left(\Phi_{\mathrm{P}} / \Phi_{\mathrm{P}}{ }^{\circ}\right)$. Bottom right: graph of $\ln (\mathrm{W})$ vs $\left[\mathbf{P d}_{3}{ }^{2+}\right]$ for TCPEBP $\cdots \bullet\left[\mathbf{P d}_{3}{ }^{2+}\right]_{\mathrm{x}}$ assembly in 1:1 MeOH: 2MeTHF at 77 K .

Figure S4. Optimized triplet geometry of TCPP $\left(\right.$ as Na^{+}salt) in a MeOH solvent field.	S6
Figure S5. Representations of the semi-occupied frontier MOs of TCPP $\left(\mathrm{Na}^{+}\right.$salt).	S 6
Table S2. Evaluation of the $\left(\mathrm{S}_{0}-\mathrm{T}_{1}\right)$ energy gap for TCPP.	S 6
Figure S6. Optimized triplet geometry of TCPBP $\left(\mathrm{Na}^{+}\right.$salt $)$in MeOH solvent field.	S 6
Figure S7. Representations of the semi-occupied frontier MOs of TCPBP $\left(\mathrm{Na}^{+}\right.$salt $)$.	S 7
Table S3. Evaluation of the $\left(\mathrm{S}_{0}-\mathrm{T}_{1}\right)$ energy gap for TCPBP.	S 7
Figure S8. Optimized triplet geometry of TCPEP $\left(\mathrm{Na}^{+}\right.$salt) in MeOH solvent field.	S 7

Figure S9. Representations of the semi-occupied frontier MOs of TCPEP (as Na^{+}salt).	S7
Table S4. Evaluation of the ($\mathrm{S}_{0}-\mathrm{T}_{1}$) energy gap for TCPEP in a MeOH solvent field.	S8
Figure S10. Optimized triplet geometry of TCPEBP (as Na^{+}salt) in a MeOH solvent field.	S8
Figure S11. Representations of the semi-occupied frontier MOs of TCPEBP (as Na^{+}salt).	S8
Table S5. Evaluation of the ($\left.\mathrm{S}_{0}-\mathrm{T}_{1}\right)$ energy gap for TCPEBP.	S8
Figure S12. Optimized triplet geometry of the TCPP $\bullet \bullet \bullet\left[\mathbf{P d}_{3}{ }^{2+}\right]$ assembly in a MeOH solvent field.	S8
Figure S13. Representations of the semi-occupied frontier MOs of the $\mathbf{T C P P} \bullet \bullet 0\left[\mathbf{P d}_{3}{ }^{2+}\right]$ assembly.	S9
Table S6. Comparison of selected calculated distances in the TCPP $\bullet \bullet \bullet\left[\mathbf{P d}_{3}{ }^{\mathbf{2}}\right]$ assembly.	S9
Figure S14. Representations of the semi-occupied frontier MOs of the TCPBP $\bullet \bullet \bullet\left[\mathbf{P d}_{3}{ }^{\mathbf{2 +}}\right]$ assembly.	S9
Table S7. Comparison of selected calculated distances in the TCPBP•o• $\left[\mathbf{P d}_{3}{ }^{\mathbf{2}}\right]$ assembly.	S10
Figure S15. Optimized triplet geometry of the TCPEP $\bullet \bullet \bullet\left[\mathbf{P d}_{3}{ }^{2+}\right]$ assembly in MeOH solvent field.	S10
Figure S16. Representations of the semi-occupied frontier MOs of the TCPEP••• $\left.{ }^{[} \mathbf{P d}_{3}{ }^{\mathbf{2}}\right]$ assembly.	S10
Table S8. Comparison of selected calculated distances in the TCPEP $\bullet \bullet \bullet\left[\mathbf{P d}_{3}{ }^{\mathbf{2}}\right]$ assembly.	S10
Table S9. Comparison of selected calculated distances in the TCPEBP $\bullet \bullet \bullet\left[\mathbf{P d}_{3}{ }^{2+}\right]$ assembly.	S11
Figure S17. Monitoring of the transient signals of TCPP, TCPEP and PCPEBP in 2 MeTHF in the presence of 2 equiv. of $\left[\mathbf{P d}_{3}{ }^{\mathbf{2 +}}\right]$ at 298 K .	S11

Table S1. Phosphorescence lifetimes for TCPP and TCPBP in $1: 1 \mathrm{MeOH}: 2 \mathrm{MeTHF}$ mixture with increasing amount of $\left[\mathbf{P d}_{3}{ }^{2+}\right]$ at 77 K .

Porphyrins $v s\left[\mathbf{P d}_{\mathbf{3}}{ }^{\mathbf{2}} \boldsymbol{]}\right.$	TCPP (ms)	TCPBP (ms)
$1: 0$	25.18 ± 0.47	24.20 ± 0.44
$1: 0.25$	25.14 ± 0.42	24.17 ± 0.49
$1: 0.5$	25.10 ± 0.37	24.12 ± 0.48
$1: 0.75$	25.06 ± 0.38	24.07 ± 0.55
$1: 1$	25.01 ± 0.44	24.03 ± 0.50

Figure S1. Top left: variation of phosphorescence spectra of TCPP $\left(1.02 \times 10^{-5} \mathrm{M}\right)$ upon adding $\left[\mathbf{P d}_{3}{ }^{\mathbf{2}}\right]$ in $1: 1 \mathrm{MeOH}: 2 \mathrm{MeTHF}$ at 77 K . Curves A-J were obtained with successive addition of $\left[\mathbf{P d}_{3}{ }^{2+}\right]$. Each curve represents an increase in $\left[\mathbf{P d}_{3}{ }^{2+}\right]$ concentration by 3.65×10^{-6} for TCPP. Top right: relative decrease of intensity with respect to the starting intensity. Middle left: plot of $\left(\Phi_{\mathrm{P}}{ }^{\circ} / \Phi_{\mathrm{P}}\right)$ vs $\left[\mathbf{P d}_{3}{ }^{\mathbf{2 +}}\right]$ (i.e. Stern-Volmer plot). Middle right: graph of $\log \left[\left(\Phi_{\mathrm{P}}{ }^{\circ}-\Phi_{\mathrm{P}}\right) / \Phi_{\mathrm{P}}\right]$ vs $\log \left[\mathbf{P d}_{3}{ }^{2+}\right]$. Bottom left: graph of $\left[1-\left(\Phi_{\mathrm{P}} / \Phi_{\mathrm{P}}{ }^{\circ}\right)\right] /\left[\mathbf{P d}_{3}{ }^{2+}\right]$ vs $\left(\Phi_{\mathrm{P}} / \Phi_{\mathrm{P}}{ }^{\circ}\right)$. Bottom right: graph of $\ln (\mathrm{W})$ vs $\left[\mathbf{P d}_{3}{ }^{\mathbf{2 +}}\right]$ for TCPP $\cdot \bullet\left[\mathbf{P d}_{3}{ }^{\mathbf{2 +}}\right]_{\mathbf{x}}$ assembly in 1:1 MeOH:2MeTHF at 77 K .

Figure S2. Top left: variation of phosphorescence spectra of TCPEP ($5.50 \times 10^{-6} \mathrm{M}$) upon adding $\left[\mathrm{Pd}_{3}{ }^{2}\right]$ in 1:1 MeOH:2MeTHF at 77 K . Curves A-J were obtained with successive addition of $\left[\mathbf{P d}_{3}{ }^{2+}\right]$. Each curve represents an increase in $\left[\mathbf{P d}_{3}{ }^{2+}\right]$ concentration by 2.11×10^{-6} for TCPEP. Top right: relative decrease of intensity with respect to the starting intensity. Middle left: plot of $\left(\Phi_{\mathrm{P}}{ }^{\circ} / \Phi_{\mathrm{P}}\right)$ vs $\left[\mathbf{P d}_{3}{ }^{2+}\right]$ (i.e. Stern-Volmer plot). Middle right: graph of $\log \left[\left(\Phi_{\mathrm{P}}{ }^{\circ}-\Phi_{\mathrm{P}}\right) / \Phi_{\mathrm{P}}\right]$ vs $\log \left[\mathbf{P d}_{3}{ }^{2+}\right]$. Bottom left: graph of $\left[1-\left(\Phi_{\mathrm{P}} / \Phi_{\mathrm{P}}{ }^{\circ}\right)\right]\left[\mathrm{Pd}_{3}{ }^{2+}\right]$ vs $\left(\Phi_{\mathrm{P}} / \Phi_{\mathrm{P}}{ }^{\circ}\right)$. Bottom right: graph of $\ln (\mathrm{W})$ vs $\left[\mathbf{P d}_{3}{ }^{2+}\right]$ for TCPEP... $\left[\mathbf{P d}_{3}{ }^{2+}\right]_{\mathbf{x}}$ assembly in $1: 1 \mathrm{MeOH}: 2 \mathrm{MeTHF}$ at 77 K .

Figure S3. Top left: variation of phosphorescence spectra of TCPEBP $\left(7.78 \times 10^{-6} \mathrm{M}\right)$ upon adding $\left[\mathbf{P d}_{3}{ }^{2+}\right.$] in $1: 1 \mathrm{MeOH}: 2 \mathrm{MeTHF}$ at 77 K . Note that the phosphorescence peaks do not move upon changing the excitation wavelength. Curves A-J were obtained with successive addition of $\left[\mathbf{P d}_{3}{ }^{2+}\right]$. Each curve represents an increase in $\left[\mathbf{P d}_{3}{ }^{2+}\right]$ concentration by 5.67×10^{-5} for TCPEBP. Top right: relative decrease of intensity with respect to the starting intensity. Middle left: plot of $\left(\Phi_{\mathrm{P}}{ }^{\circ} / \Phi_{\mathrm{P}}\right)$ vs $\left[\mathbf{P d}_{\mathbf{3}^{2+}}{ }^{\mathbf{+}}\right.$ (i.e. Stern-Volmer plot). Middle right: graph of $\log \left[\left(\Phi_{\mathrm{P}}{ }^{\circ}-\Phi_{\mathrm{P}}\right) / \Phi_{\mathrm{P}}\right]$ vs $\log \left[\mathbf{P d}_{3}{ }^{2+}\right]$. Bottom left: graph of $\left[1-\left(\Phi_{\mathrm{P}} / \Phi_{\mathrm{P}}{ }^{\circ}\right)\right] /\left[\mathbf{P d}_{3}{ }^{\mathbf{2 +}}\right]$ vs $\left(\Phi_{\mathrm{P}} / \Phi_{\mathrm{P}}{ }^{\circ}\right)$. Bottom right: graph of $\ln (\mathrm{W}) v s\left[\mathbf{P d}_{\mathbf{3}^{+}}{ }^{\mathbf{2}}\right]$ for TCPEBP $\cdots\left[\mathbf{P d}_{3}{ }^{\mathbf{2 +}}\right]_{\mathbf{x}}$ assembly in $1: 1 \mathrm{MeOH}: 2 \mathrm{MeTHF}$ at 77 K .

Figure S4. Optimized triplet geometry of TCPP (as Na^{+}salt) in a MeOH solvent field.

Figure S5. Representations of the semi-occupied frontier MOs of TCPP $\left(\mathrm{Na}^{+}\right.$salt) in MeOH solvent field (energies in eV).

Table S2. Evaluation of the $\left(\mathrm{S}_{0}-\mathrm{T}_{1}\right)$ energy gap for TCPP.

	Singlet S_{0} (a.u.)	Triplet T_{1} (a.u.)	$\left(\mathrm{S}_{0}-\mathrm{T}_{1}\right)$ $($ a.u. $)$	$\left(\mathrm{S}_{0}-\mathrm{T}_{1}\right)$ (eV)	Computed position of phosphorescence (nm)
TCPP	-3540.21912	-3540.16192	0.05720	1.55653	797

Figure S6. Optimized triplet geometry of TCPBP $\left(\mathrm{Na}^{+}\right.$salt $)$in MeOH solvent field.

Figure S7. Representations of the semi-occupied frontier MOs of TCPBP (Na^{+}salt) in MeOH solvent field (energies in eV).

Table S3. Evaluation of the ($\mathrm{S}_{0}-\mathrm{T}_{1}$) energy gap for TCPBP.

	Singlet S_{0} $($ a.u. $)$	Triplet T_{1} (a.u.)	$\left(\mathrm{S}_{0}-\mathrm{T}_{1}\right)$ $($ a.u. $)$	$\left(\mathrm{S}_{0}-\mathrm{T}_{1}\right)$ (eV)	Computed position of phosphorescence (nm)
TCPBP	-4154.76960	-4154.71623	0.05337	1.45227	855

Figure S8. Optimized triplet geometry of TCPEP $\left(\mathrm{Na}^{+}\right.$salt $)$in MeOH solvent field.

Figure S9. Representations of the semi-occupied frontier MOs of TCPEP (as Na^{+}salt) in a MeOH solvent field (energies in eV).

Table S4. Evaluation of the $\left(\mathrm{S}_{0}-\mathrm{T}_{1}\right)$ energy gap for TCPEP in a MeOH solvent field.

	Singlet S_{0} (a.u.)	Triplet T_{1} (a.u.)	$\left(\mathrm{S}_{0}-\mathrm{T}_{1}\right)$ (a.u.)	$\left(\mathrm{S}_{0}-\mathrm{T}_{1}\right)$ (eV)	Computed position of phosphorescence (nm)
TCPEP	-3844.86559	-3844.81791	0.04768	1.29750	957

Figure S10. Optimized triplet geometry of TCPEBP (as Na^{+}salt) in a MeOH solvent field.

Figure S11. Representations of the semi-occupied frontier MOs of TCPEBP (as Na^{+}salt) in a MeOH solvent field (energies in eV).

Table S5. Evaluation of the $\left(\mathrm{S}_{0}-\mathrm{T}_{1}\right)$ energy gap for TCPEBP.

	Singlet S_{0} (a.u.)	Triplet T_{1} (a.u.)	$\left(\mathrm{S}_{0}-\mathrm{T}_{1}\right)$ $($ a.u. $)$	$\left(\mathrm{S}_{0}-\mathrm{T}_{1}\right)$ (eV)	Computed position of phosphorescence (nm)
TCPEBP	-4459.41685	-4459.37301	0.04384	1.19282	1041

Figure S12. Optimized triplet geometry of the TCPP••• $\left[\mathbf{P d}_{3}{ }^{\mathbf{2}}\right]$ assembly in a MeOH solvent field.

HSOMO+1 (-3.04950)

Figure S13. Representations of the semi-occupied frontier MOs of the TCPP••• $\left[\mathbf{P d}_{3}{ }^{\mathbf{2 +}}\right]$ assembly in MeOH solvent field (energies in eV).

Table S6. Comparison of selected calculated distances in the TCPP $\bullet \bullet \bullet\left[\mathbf{P d}_{3}{ }^{2+}\right]$ assembly.

	Singlet $\mathrm{S}_{0}(\AA)^{\mathrm{a}}$	Triplet $\mathrm{T}_{1}(\AA)$
$\mathrm{Pd}-\mathrm{Pd}$	$2.706,2.696,2.690(\mathrm{av}=2.697)$	$2.829,2.819,2.802(\mathrm{av}=2.817)$
$\mathrm{Pd}-\mathrm{P}$	$2.415,2.408,2.405,2.401,2.398,2.394$	$2.446,2.430,2.428,2.426,2.425,2.422$
	$(\mathrm{av} .=2.404)$	$(\mathrm{av} .=2.430)$
$\mathrm{Pd} \bullet \bullet \cdot \mathrm{O}$	$1^{\text {st }} \mathrm{O}: 3.861,3.754,3.608(\mathrm{av} .=3.741)$	$1^{\text {st }} \mathrm{O}: 4.002,3.711,3.031(\mathrm{av}=3.581)$
$\mathrm{Pd} \cdots \cdot \cdot \mathrm{Zn}$	$2^{\text {nd }} \mathrm{O}: 5.605,4.447,4.444(\mathrm{av} .=4.832)$	$2^{\text {nd }} \mathrm{O}: 5.842,4.747,3.711(\mathrm{av}=4.767)$
	$13.580,13.339,13.326(\mathrm{av} .=13.415)$	$13.472,13.361,13.165(\mathrm{av} .=13.333)$

${ }^{\text {a }}$ From reference 22 b of the text.

Figure S14. Representations of the semi-occupied frontier MOs of the TCPBP $\bullet \bullet \bullet\left[\mathbf{P d}_{3}{ }^{2+}\right]$ assembly in MeOH solvent field (energies in eV).

Table S7. Comparison of selected calculated distances in the TCPBP $\bullet \bullet\left[\mathbf{P d}_{3}{ }^{2+}\right]$ assembly.

	Singlet $\mathrm{S}_{0}(\AA)^{\mathrm{a}}$	Triplet $\mathrm{T}_{1}(\AA)$
$\mathrm{Pd}-\mathrm{Pd}$	$2.702,2.691,2.675(\mathrm{av} .=2.689)$	$2.934,2.885,2.795(\mathrm{av}=2.871)$
$\mathrm{Pd}-\mathrm{P}$	$2.449,2.438,2.403,2.397,2.392,2.389$	$2.501,2.469,2.459,2.456,2.413,2.399$
	$(\mathrm{av}=2.411)$	$(\mathrm{av}=2.450)$
$\mathrm{Pd} \cdot \cdots \mathrm{O}$	$1^{\text {st }} \mathrm{O}: 3.645,3.631,3.485(\mathrm{av} .=3.587)$	$1^{\text {st }} \mathrm{O}: 3.648,3.545,3.204(\mathrm{av} .=3.466)$
$\mathrm{Pd} \cdots \cdot \mathrm{Zn}$	$2^{\text {nd }} \mathrm{O}: 4.055,3.745,3.443(\mathrm{av}=3.748)$	$2^{\text {nd }} \mathrm{O}: 4.209,3.401,3.303(\mathrm{av} .=3.638)$
	$13.340,13.025,12.354(\mathrm{av} .=12.906)$	$13.195,13.083,12.209(\mathrm{av} .=12.829)$

${ }^{\text {a }}$ From reference 22 b .of the text.

Figure S15. Optimized triplet geometry of the TCPEP••• $\left[\mathbf{P d}_{3}{ }^{\mathbf{2 +}}\right]$ assembly in MeOH solvent field.

Figure S16. Representations of the semi-occupied frontier MOs of the TCPEP $\bullet \bullet \bullet\left[\mathbf{P d}_{3}{ }^{2+}\right]$ assembly in MeOH solvent field (energies in eV).

Table S8. Comparison of selected calculated distances in the TCPEP $\bullet \bullet\left[\mathbf{P d}_{3}{ }^{2+}\right]$ assembly.

	Singlet $\mathrm{S}_{0}(\AA)^{\mathrm{a}}$	Triplet $\mathrm{T}_{1}(\AA)$
$\mathrm{Pd}-\mathrm{Pd}$	$2.682,2.675,2.670(\mathrm{av} .=2.676)$	$2.829,2.819,2.802(\mathrm{av} .=2.817)$
$\mathrm{Pd}-\mathrm{P}$	$2.443,2.413,2.409,2.408,2.399,2.380$	$2.446,2.430,2.428,2.426,2.425,2.422$
	$(\mathrm{av} .=2.409)$	$(\mathrm{av} .=2.430)$
$\mathrm{Pd} \bullet \bullet \cdot \mathrm{O}$	$1^{\text {st }} \mathrm{O}: 3.617,3.438,3.079(\mathrm{av} .=3.378)$	$1^{\text {st }} \mathrm{O}: 3.602,3.211,3.031(\mathrm{av} .=3.281)$
$\mathrm{Pd} \cdots \cdot \mathrm{Zn}$	$2^{\text {nd }} \mathrm{O}: 3.868,3.573,3.056(\mathrm{av}=3.499)$	$2^{\text {nd }} \mathrm{O}: 3.642,3.447,3.011(\mathrm{av} .=3.367)$
	$15,582,14.998,14.956(\mathrm{av} .=15.179)$	$15,478,14.893,14.855(\mathrm{av} .=15.075)$

${ }^{\text {a }}$ From reference 22c of the text.

Table S9. Comparison of selected calculated distances in the TCPEBP••• $\left[\mathrm{Pd}_{3}{ }^{2+}\right]$ assembly.

	Singlet $\mathrm{S}_{0}(\AA)^{\mathrm{a}}$	Triplet $\mathrm{T}_{1}(\AA)$
$\mathrm{Pd}-\mathrm{Pd}$	$2.707,2.695,2.678(\mathrm{av} .=2.693)$	$2.841,2.807,2.804(\mathrm{av}=2.817)$
$\mathrm{Pd}-\mathrm{P}$	$2.433,2.411,2.407,2.396,2.395,2.392$	$2.453,2.439,2.431,2.431,2.429,2.417$
	$(\mathrm{av} .=2.406)$	$(\mathrm{av} .=2.433)$
$\mathrm{Pd} \cdot \cdots \cdot \mathrm{O}$	$1^{\text {st }} \mathrm{O}: 3.543,3.213,2.896(\mathrm{av} .=3.217)$	$1^{\text {st }} \mathrm{O}: 3.296,3.153,3.041(\mathrm{av} .=3.163)$
$\mathrm{Pd} \cdot \cdots \mathrm{Zn}$	$2^{\text {nd }} \mathrm{O}: 3.696,3.184,3.023(\mathrm{av} .=3.301)$	$2^{\text {nd }} \mathrm{O}: 3.530,3.372,2.803(\mathrm{av}=3.235)$
	$15.181,14.887,14.642(\mathrm{av} .=14.903)$	$15.508,14.417,14.008(\mathrm{av} .=14.644)$

${ }^{\text {a FFrom reference } 22 \mathrm{c} \text { of the text. }}$

Figure S17. Monitoring of the transient signals of TCPP, TCPEP and PCPEBP in 2MeTHF in the presence of 2 equiv. of $\left[\mathbf{P d}_{3}{ }^{\mathbf{2 +}}\right]$ at 298 K . The monitoring wavelengths are indicated on the graphs. The ps and ns time constants are associated with the charge separation and charge recombination, respectively.

