Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Supporting Information

Triplet Energy *vs* Electron Transfers in Porphyrin- and Tetrabenzoporphyrincarboxylates/Pd₃(dppm)₃(CO)²⁺ Cluster Assemblies; A Question of Negative Charge

Peng Luo,^a Paul-Ludovic Karsenti,^a Benoit Marsan^{b*} and Pierre D. Harvey^{a*}

aDépartement de chimie, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada. ^bDépartement de chimie, Université du Québec à Montréal, Montréal, QC, H2X 2J6, Canada.

Table of Content

Table S1. Phosphorescence lifetimes for TCPP and TCPBP in 1:1 MeOH:2MeTHF	S2
mixture with increasing amount of $[Pd_3^{2+}]$ at 77 K.	
Figure S1. Top left: variation of phosphorescence spectra of TCPP $(1.02 \times 10^{-5} \text{ M})$ upon	S3
adding [Pd ₃ ²⁺] in 1:1 MeOH:2MeTHF at 77 K. Curves A-J were obtained with successive	
addition of $[Pd_3^{2+}]$. Each curve represents an increase in $[Pd_3^{2+}]$ concentration by 3.65 ×	
10 ⁻⁶ for TCPP . Top right: relative decrease of intensity with respect to the starting	
intensity. Middle left: plot of (Φ_P°/Φ_P) vs $[\mathbf{Pd}_3^{2+}]$ (<i>i.e.</i> Stern-Volmer plot). Middle right:	
graph of $\log[(\Phi_P^{\circ}-\Phi_P)/\Phi_P] vs \log[\mathbf{Pd_3^{2+}}]$. Bottom left: graph of $[1-(\Phi_P/\Phi_P^{\circ})]/[\mathbf{Pd_3^{2+}}] vs$	
$(\Phi_{\rm P}/\Phi_{\rm P}^{\circ})$. Bottom right: graph of ln(W) vs $[{\rm Pd}_3^{2+}]$ for TCPP•••[Pd_3^{2+}]_x assembly in 1:1	
MeOH:2MeTHF at 77 K.	
Figure S2. Top left: variation of phosphorescence spectra of TCPEP $(5.50 \times 10^{-6} \text{ M})$ upon	S4
adding [Pd ₃ ²⁺] in 1:1 MeOH:2MeTHF at 77 K. Curves A-J were obtained with successive	
addition of $[\mathbf{Pd_3^{2+}}]$. Each curve represents an increase in $[\mathbf{Pd_3^{2+}}]$ concentration by 2.11 ×	
10 ⁻⁶ for TCPEP . Top right: relative decrease of intensity with respect to the starting	
intensity. Middle left: plot of (Φ_P°/Φ_P) vs $[\mathbf{Pd}_3^{2+}]$ (<i>i.e.</i> Stern-Volmer plot). Middle right:	
graph of $\log[(\Phi_P^{\circ}-\Phi_P)/\Phi_P]$ vs $\log[\mathbf{Pd_3^{2+}}]$. Bottom left: graph of $[1-(\Phi_P/\Phi_P^{\circ})]/[\mathbf{Pd_3^{2+}}]$ vs	
(Φ_P/Φ_P°) . Bottom right: graph of ln(W) vs $[Pd_3^{2+}]$ for TCPEP•••[Pd_3^{2+}]_x assembly in 1:1	
MeOH:2MeTHF at 77 K.	
Figure S3 . Top left: variation of phosphorescence spectra of TCPEBP $(7.78 \times 10^{-6} \text{ M})$	S5
upon adding $[Pd_{3}^{2+}]$ in 1:1 MeOH:2MeTHF at 77 K. Note that the phosphorescence peaks	
do not move upon changing the excitation wavelength. Curves A-J were obtained with	
successive addition of $[Pd_3^{2+}]$. Each curve represents an increase in $[Pd_3^{2+}]$ concentration	
by 5.67×10^{-5} for TCPEBP . Top right: relative decrease of intensity with respect to the	
starting intensity. Middle left: plot of $(\Phi_P^{\circ}/\Phi_P) vs [Pd_3^{2+}]$ (<i>i.e.</i> Stern-Volmer plot). Middle	
right: graph of $\log[(\Phi_P^{\circ}-\Phi_P)/\Phi_P]$ vs $\log[\mathbf{Pd_3^{2+}}]$. Bottom left: graph of $[1-(\Phi_P/\Phi_P^{\circ})]/[\mathbf{Pd_3^{2+}}]$	
vs (Φ_P/Φ_P°). Bottom right: graph of ln(W) vs [Pd ₃ ²⁺] for TCPEBP•••[Pd ₃ ²⁺] _x assembly in	
1:1 MeOH: 2MeTHF at 77 K.	
Figure S4. Optimized triplet geometry of TCPP (as Na ⁺ salt) in a MeOH solvent field.	S6
Figure S5. Representations of the semi-occupied frontier MOs of TCPP (Na ⁺ salt).	S6
Table S2 . Evaluation of the (S_0-T_1) energy gap for TCPP .	S6
Figure S6. Optimized triplet geometry of TCPBP (Na ⁺ salt) in MeOH solvent field.	S6
Figure S7. Representations of the semi-occupied frontier MOs of TCPBP (Na ⁺ salt).	S7
Table S3 . Evaluation of the (S_0-T_1) energy gap for TCPBP .	S7
Figure S8 . Optimized triplet geometry of TCPEP (Na ⁺ salt) in MeOH solvent field.	S7

Figure S9. Representations of the semi-occupied frontier MOs of TCPEP (as Na ⁺ salt).	S7
Table S4 . Evaluation of the (S_0-T_1) energy gap for TCPEP in a MeOH solvent field.	S 8
Figure S10. Optimized triplet geometry of TCPEBP (as Na ⁺ salt) in a MeOH solvent	S 8
field.	
Figure S11. Representations of the semi-occupied frontier MOs of TCPEBP (as Na ⁺ salt).	S 8
Table S5 . Evaluation of the (S_0-T_1) energy gap for TCPEBP .	S 8
Figure S12. Optimized triplet geometry of the TCPP•••[Pd ₃ ²⁺] assembly in a MeOH	S 8
solvent field.	
Figure S13. Representations of the semi-occupied frontier MOs of the TCPP•••[Pd ₃ ²⁺]	S9
assembly.	
Table S6 . Comparison of selected calculated distances in the TCPP •••[Pd ₃ ²⁺] assembly.	S9
Figure S14. Representations of the semi-occupied frontier MOs of the TCPBP •••[Pd ₃ ²⁺]	S9
assembly.	
Table S7 . Comparison of selected calculated distances in the TCPBP $\cdot \cdot \cdot [Pd_3^{2+}]$ assembly.	S10
Figure S15. Optimized triplet geometry of the TCPEP•••[Pd ₃ ²⁺] assembly in MeOH	S10
solvent field.	
Figure S16. Representations of the semi-occupied frontier MOs of the TCPEP•••[Pd ₃ ²⁺]	S10
assembly.	
Table S8. Comparison of selected calculated distances in the TCPEP•••• $[Pd_3^{2+}]$ assembly.	S10
Table S9. Comparison of selected calculated distances in the TCPEBP••• $[Pd_3^{2+}]$	S11
assembly.	
Figure S17. Monitoring of the transient signals of TCPP, TCPEP and PCPEBP in	S11
2MeTHF in the presence of 2 equiv. of $[Pd_3^{2+}]$ at 298 K.	

Table S1. Phosphorescence lifetimes for TCPP and TCPBP in 1:1 MeOH:2MeTHF mixture with increasing amount of $[Pd_3^{2+}]$ at 77 K.

Porphyrins vs [Pd ₃ ²⁺]	TCPP (ms)	TCPBP (ms)
1:0	25.18±0.47	24.20±0.44
1:0.25	25.14±0.42	24.17±0.49
1:0.5	25.10±0.37	24.12±0.48
1:0.75	25.06±0.38	24.07±0.55
1:1	25.01±0.44	24.03±0.50

Figure S1. Top left: variation of phosphorescence spectra of **TCPP** (1.02×10^{-5} M) upon adding [Pd₃²⁺] in 1:1 MeOH:2MeTHF at 77 K. Curves A-J were obtained with successive addition of [Pd₃²⁺]. Each curve represents an increase in [Pd₃²⁺] concentration by 3.65×10^{-6} for **TCPP**. Top right: relative decrease of intensity with respect to the starting intensity. Middle left: plot of $(\Phi_P^{\circ}/\Phi_P) vs$ [Pd₃²⁺] (*i.e.* Stern-Volmer plot). Middle right: graph of $\log[(\Phi_P^{\circ}-\Phi_P)/\Phi_P] vs$ $\log[Pd_3^{2+}]$. Bottom left: graph of $[1-(\Phi_P/\Phi_P^{\circ})]/[Pd_3^{2+}] vs$ (Φ_P/Φ_P°). Bottom right: graph of $\ln(W) vs$ [Pd₃²⁺] for **TCPP···**[Pd₃²⁺]_x assembly in 1:1 MeOH:2MeTHF at 77 K.

Figure S2. Top left: variation of phosphorescence spectra of **TCPEP** (5.50 × 10⁻⁶ M) upon adding [Pd₃²⁺] in 1:1 MeOH:2MeTHF at 77 K. Curves A-J were obtained with successive addition of [Pd₃²⁺]. Each curve represents an increase in [Pd₃²⁺] concentration by 2.11 × 10⁻⁶ for **TCPEP**. Top right: relative decrease of intensity with respect to the starting intensity. Middle left: plot of (Φ_P°/Φ_P) vs [Pd₃²⁺] (*i.e.* Stern-Volmer plot). Middle right: graph of log[($\Phi_P^{\circ}-\Phi_P$)/ Φ_P] vs log[Pd₃²⁺]. Bottom left: graph of [1-(Φ_P/Φ_P°)]/[Pd₃²⁺] vs (Φ_P/Φ_P°). Bottom right: graph of ln(W) vs [Pd₃²⁺] for **TCPEP····**[Pd₃²⁺]_x assembly in 1:1 MeOH:2MeTHF at 77 K.

Figure S3. Top left: variation of phosphorescence spectra of **TCPEBP** (7.78 × 10⁻⁶ M) upon adding $[Pd_3^{2+}]$ in 1:1 MeOH:2MeTHF at 77 K. Note that the phosphorescence peaks do not move upon changing the excitation wavelength. Curves A-J were obtained with successive addition of $[Pd_3^{2+}]$. Each curve represents an increase in $[Pd_3^{2+}]$ concentration by 5.67 × 10⁻⁵ for **TCPEBP**. Top right: relative decrease of intensity with respect to the starting intensity. Middle left: plot of $(\Phi_P^{\circ}/\Phi_P) vs [Pd_3^{2+}]$ (*i.e.* Stern-Volmer plot). Middle right: graph of $\log[(\Phi_P^{\circ}-\Phi_P)/\Phi_P] vs \log[Pd_3^{2+}]$. Bottom left: graph of $[1-(\Phi_P/\Phi_P^{\circ})]/[Pd_3^{2+}] vs (\Phi_P/\Phi_P^{\circ})$. Bottom right: graph of $\ln(W) vs [Pd_3^{2+}]$ for **TCPEBP**...[Pd_3^{2+}] x assembly in 1:1 MeOH:2MeTHF at 77 K.

Figure S4. Optimized triplet geometry of TCPP (as Na⁺ salt) in a MeOH solvent field.

Figure S5. Representations of the semi-occupied frontier MOs of TCPP (Na⁺ salt) in MeOH solvent field (energies in eV).

Table S	Table S2. Evaluation of the (S_0, T_1) energy gap for TCPP.					
	Singlet S ₀	Triplet T ₁	$(S_0 - T_1)$	(S_0-T_1)	Computed position of	
	(a.u.)	(a.u.)	(a.u.)	(eV)	phosphorescence (nm)	
ТСРР	-3540.21912	-3540.16192	0.05720	1.55653	797	

Figure S6. Optimized triplet geometry of TCPBP (Na⁺ salt) in MeOH solvent field.

Figure S7. Representations of the semi-occupied frontier MOs of TCPBP (Na⁺ salt) in MeOH solvent field (energies in eV).

Table S3. Evaluation of the (S_0, I_1) energy gap for TCPBP .						
	Singlet S ₀	Triplet T ₁	(S_0-T_1)	(S_0-T_1)	Computed position of	
	(a.u.)	(a.u.)	(a.u.)	(eV)	phosphorescence (nm)	
TCPBP	-4154.76960	-4154.71623	0.05337	1.45227	855	

Figure S8. Optimized triplet geometry of TCPEP (Na⁺ salt) in MeOH solvent field.

Figure S9. Representations of the semi-occupied frontier MOs of TCPEP (as Na⁺ salt) in a MeOH solvent field (energies in eV).

1 abic 54.	L'unuation of the		up for i Ci Li		sorvent neid.
	Singlet S ₀	Triplet T ₁	(S_0-T_1)	$(S_0 - T_1)$	Computed position of
	(a.u.)	(a.u.)	(a.u.)	(eV)	phosphorescence (nm)
TCPEP	-3844.86559	-3844.81791	0.04768	1.29750	957

Table S4. Evaluation of the (S_0-T_1) energy gap for TCPEP in a MeOH solvent field.

Figure S10. Optimized triplet geometry of TCPEBP (as Na⁺ salt) in a MeOH solvent field.

Figure S11. Representations of the semi-occupied frontier MOs of **TCPEBP** (as Na⁺ salt) in a MeOH solvent field (energies in eV).

Table S5 . Evaluation of the (S_0-T_1) energy gap for TCPEBP .					
	Singlet S ₀	Triplet T ₁	(S_0-T_1)	(S_0-T_1)	Computed position of
	(a.u.)	(a.u.)	(a.u.)	(eV)	phosphorescence (nm)
TCPEBP	-4459.41685	-4459.37301	0.04384	1.19282	1041
		Side View	()- ≥}∕∝ -(Top View

Figure S12. Optimized triplet geometry of the TCPP•••[Pd_3^{2+}] assembly in a MeOH solvent field.

Figure S13. Representations of the semi-occupied frontier MOs of the TCPP•••[Pd_3^{2+}] assembly in MeOH solvent field (energies in eV).

Table S6. Comp	arison of selected	calculated distant	ces in the TCPP ••	•[Pd ₃ ²⁺] assembly
----------------	--------------------	--------------------	---------------------------	---------------------------------	------------

	Singlet S	S_0 (Å) ^a	Triplet T	1(Å)
Pd-Pd	2.706, 2.696, 2.690 (a	av.=2.697)	2.829, 2.819, 2.802 (av	7.=2.817)
D A D	2.415, 2.408, 2.405, 2	2.401, 2.398, 2.394	2.446, 2.430, 2.428, 2.4	426, 2.425, 2.422
ru-r	(av.=2.404)		(av.=2.430)	
DdaaoO	1 st O: 3.861, 3.754, 3	.608 (av.=3.741)	1 st O: 4.002, 3.711, 3.0	31 (av.=3.581)
Pa•••O	2 nd O: 5.605, 4.447, 4	.444 (av.=4.832)	2 nd O: 5.842, 4.747, 3.	711 (av.=4.767)
Pd•••Zn	13.580, 13.339, 13.32	26 (av.=13.415)	13.472, 13.361, 13.165	5 (av.=13.333)
^a From refere	ence 22b of the text.			
Side View	Je for	-	Je for	* For
Top View	LSOMO-1 (-5.15942)	LSOMO (-4.75398)	HSOMO (-4.74119)	HSOMO+1 (-2.30012)

Figure S14. Representations of the semi-occupied frontier MOs of the TCPBP•••[Pd_3^{2+}] assembly in MeOH solvent field (energies in eV).

	sinpulison of selected calculated distances	in the render [143] usseniory.
	Singlet S ₀ (Å) ^a	Triplet T_1 (Å)
Pd-Pd	2.702, 2.691, 2.675 (av.=2.689)	2.934, 2.885, 2.795 (av.=2.871)
D4 D	2.449, 2.438, 2.403, 2.397, 2.392, 2.389	2.501, 2.469, 2.459, 2.456, 2.413, 2.399
ru-r	(av.=2.411)	(av.=2.450)
DdeeoO	1 st O: 3.645, 3.631, 3.485 (av.=3.587)	1 st O: 3.648, 3.545, 3.204 (av.=3.466)
Patto	2 nd O: 4.055, 3.745, 3.443 (av.=3.748)	2 nd O: 4.209, 3.401, 3.303 (av.=3.638)
Pd•••Zn	13.340, 13.025, 12.354 (av.=12.906)	13.195, 13.083, 12.209 (av.=12.829)
^a From refere	nce 22b.of the text.	

Table S7. Comparison of selected calculated distances in the TCPBP•••[Pd₃²⁺] assembly.

Figure S15. Optimized triplet geometry of the TCPEP•••[Pd₃²⁺] assembly in MeOH solvent field.

Figure S16. Representations of the semi-occupied frontier MOs of the TCPEP•••[Pd_3^{2+}] assembly in MeOH solvent field (energies in eV).

Table S8. Comparison of selected calculated distances in the	he TCPEP	$[Pd_3^{2+}]$	assembly	y.
--	----------	---------------	----------	----

	Singlet S ₀ (Å) ^a	Triplet T ₁ (Å)
Pd-Pd	2.682, 2.675, 2.670 (av.=2.676)	2.829, 2.819, 2.802 (av.=2.817)
DAD	2.443, 2.413, 2.409, 2.408, 2.399, 2.380	2.446, 2.430, 2.428, 2.426, 2.425, 2.422
ru-r	(av.=2.409)	(av.=2.430)
DdaaoO	1 st O: 3.617, 3.438, 3.079 (av.=3.378)	1 st O: 3.602, 3.211, 3.031 (av.=3.281)
Patto	2 nd O: 3.868, 3.573, 3.056 (av.=3.499)	2 nd O: 3.642, 3.447, 3.011 (av.=3.367)
Pd•••Zn	15,582, 14.998, 14.956 (av.=15.179)	15,478, 14.893, 14.855 (av.=15.075)
а Г (

^aFrom reference 22c of the text.

Tuble 57. Comparison of beleeved eareanated ansances in the Ter LDT [Tug] absentory.		
	Singlet S ₀ (Å) ^a	Triplet T_1 (Å)
Pd-Pd	2.707, 2.695, 2.678 (av.=2.693)	2.841, 2.807, 2.804 (av.=2.817)
Pd-P	2.433, 2.411, 2.407, 2.396, 2.395, 2.392	2.453, 2.439, 2.431, 2.431, 2.429, 2.417
	(av.=2.406)	(av.=2.433)
Pd•••O	1 st O: 3.543, 3.213, 2.896 (av.=3.217)	1 st O: 3.296, 3.153, 3.041 (av.=3.163)
	2 nd O: 3.696, 3.184, 3.023 (av.=3.301)	2 nd O: 3.530, 3.372, 2.803 (av.=3.235)
Pd•••Zn	15.181, 14.887, 14.642 (av.=14.903)	15.508, 14.417, 14.008 (av.=14.644)

Table S9. Comparison of selected calculated distances in the TCPEBP•••[Pd₃²⁺] assembly.

^aFrom reference 22c of the text.

Figure S17. Monitoring of the transient signals of TCPP, TCPEP and PCPEBP in 2MeTHF in the presence of 2 equiv. of $[Pd_3^{2+}]$ at 298 K. The monitoring wavelengths are indicated on the graphs. The ps and ns time constants are associated with the charge separation and charge recombination, respectively.