Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Electronic Supplementary Information

Self-assembly of near-unity helical Ce_{1-X}M_xO₂ (x=0.1, M=Ni, Bi) solid solutions

with tuneable optical activity

Jing Chen^{1, 2}, Songmei Li¹*, Juan Du¹, Jianhua Liu¹, Mei Yu¹ AND Zhiyong Tang²*

¹Key Laboratory of Aerospace advanced materials and performance of Ministry of

Education, School of Materials Science and Engineering, Beihang University, Beijing,

100191, P. R. China.

²Chinese Academy of Sciences, National Center for Nanoscience & Technology,

Beijing 100190, China

Corresponding Authors :

*E-mail: songmei_li@buaa.edu.cn

*E-mail: zytang@nanoctr.cn

1. Experimental method

1.1 Synthesis of Ce_{1-x}M_xO₂ nanostructures

All chemical regents are commercially available and without any further purification. Typically, in the synthesis of helical nanospindles-like Ce_{0.9}Ni_{0.1}O₂, 6 mmol $_{\rm L}$ -AspNa, 1.8 mmol cerium nitrate and 0.2 mmol nickel nitrate were dissolved in 10 ml deionized water, then 10 mL 0.15 M Na₂CO₃ was added to the mixture under stirring. Then stirring gently for 3h, the resulting suspension was hydrothermal treated at 160 °C for 24 h. The as-prepared products were washed with deionized water and ethanol twice, respectively. Then the result black slurry products were stay overnight at 60 °C in air. After calcinated at 450 °C in air for 3 h, a black gray CeNiO₂ powder was obtained.

For the preparation of $Ce_{0.9}Bi_{0.1}O_2$ nanospindles, all the other experimental procedures remained the same as described above, except for the nickel nitrate is replaced with bismuth nitrate.

1.2 Characterization

The crystallographic phases of the as-prepared simples were detected on a Rikagu D/max 2200PC, with Cu K α radiation (λ =1.5406 Å). The morphology of the as-prepared simples was characterized by FE-SEM (FEI SIRION) and transmission electron microscopy (JEOL 2010 FEG). The composition of these samples was measured by inductively coupled plasma-atomic emission spectrometer (ICP-AES, USA Thermo Jarrell-Ash Corp. ICP-9000 (N+M)). Diffuse reflectance ultraviolet visible (DRUV) spectra was performed on a Shimadzu UV-3600 spectropolarimeter. DRCD spectra were recorded by a JASCO J-815 spectropolarimeter.

Figure S1. SEM images of Ce-compounds obtained after reaction at 160 $^{\circ}$ C for (a) 1 h and (b) 24 h.

Figure S2. SEM images (a), TEM images (b), HRTEM images (c) and SAED (inset in c) of $Ce_{0.9}Zn_{0.1}O_2$.

Figure S3. DRCD (top) and DRUV-vis (bottom) spectra of $Ce_{0.9}Zn_{0.1}O_2$.